Inverse problem method applied to flow field optimization of proton exchange membrane fuel cells
-
摘要: 為尋求最佳的流道高度參數,利用由簡化共軛梯度法(反向求解器)和完整的三維、兩相、非等溫燃料電池數學模型(正向求解器)構成的質子交換膜燃料電池多參數最佳化反問題求解方法,將流道各彎頭處高度作為搜尋變量(最佳化對象),以電池輸出功率密度的倒數作為目標函數,通過搜尋目標函數最小值,得到了流道各彎頭處最佳高度(最優化設計參數值).結果表明,最佳的蛇型流場除出口流道為高度漸擴型外,其余流道均為高度漸縮型,其性能比傳統蛇型流場提高了約11.9%.漸縮型的流道強化了肋下對流,可有效移除肋條下方多孔擴散層中的液態水,提高反應氣向多孔電極的傳遞速率,因而改善了電池性能.漸擴型的出口流道可防止過強的肋下對流導致燃料"短路",直接跨過多孔擴散層從電池出口流出造成燃料浪費.Abstract: An optimization approach,combining a simplified conjugate-gradient method(inverse problem solver) and a three-dimensional,two-phase and non-isothermal fuel cell model(direct problem solver),was developed to determine the key geometric parameters of a proton exchange membrane fuel cell.In this approach,with channel height as the searching variable(optimized object) and the reciprocal of cell output power density as the objective function,the optimum channel height(optimized design variable) was derived from searching the minimum of the objective function.The results show that for the optimized serpentine design,except the outlet channel being diverging,the other channels should be tapered.The cell performance is,meanwhile,improved by 11.9% compared to the convectional serpentine flow field under the same operating conditions.A detailed investigation of local transport characteristics reveals that the tapered channel design enhances sub-rib convection,leading to more oxygen transport over the cell and more effective liquid water removal out of the cell;however,the diverging outlet channel can provide relatively proper sub-rib convection to prevent reactants from "short-circuit",which means that reactants directly flow out of the cell and thus results in reactant waste.
-

計量
- 文章訪問數: 99
- HTML全文瀏覽量: 18
- PDF下載量: 9
- 被引次數: 0