<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于有效應力的深錐泥層高度與底流濃度數學關系

那慶 王勇

那慶, 王勇. 基于有效應力的深錐泥層高度與底流濃度數學關系[J]. 工程科學學報, 2022, 44(7): 1126-1133. doi: 10.13374/j.issn2095-9389.2021.12.16.005
引用本文: 那慶, 王勇. 基于有效應力的深錐泥層高度與底流濃度數學關系[J]. 工程科學學報, 2022, 44(7): 1126-1133. doi: 10.13374/j.issn2095-9389.2021.12.16.005
NA Qing, WANG Yong. Research on the mathematical relationship between mud height and underflow concentration of deep cone thickener based on effective stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1126-1133. doi: 10.13374/j.issn2095-9389.2021.12.16.005
Citation: NA Qing, WANG Yong. Research on the mathematical relationship between mud height and underflow concentration of deep cone thickener based on effective stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1126-1133. doi: 10.13374/j.issn2095-9389.2021.12.16.005

基于有效應力的深錐泥層高度與底流濃度數學關系

doi: 10.13374/j.issn2095-9389.2021.12.16.005
基金項目: 國家自然科學基金資助項目(?52130404);中央高校基本科研業務費資助項目(FRF-IDRY-20-031,FRF-TP-19-002C2Z)
詳細信息
    作者簡介:

    王勇,吳愛祥,等。細粒全尾動態壓密與靜態壓密機理。北京科技大學學報,2013,35(5):566)

    通訊作者:

    E-mail: wangyong8551@126.com

  • 中圖分類號: TD853

Research on the mathematical relationship between mud height and underflow concentration of deep cone thickener based on effective stress

More Information
  • 摘要: 首先,從Terzaghi有效應力原理定義出發,證明了有效應力原理在深錐濃密機泥層壓力分析中的適用性。其次,以壓縮系數$ \alpha $與泥層壓力之間的關系為紐帶,建立了不同情況($ \alpha $為常數和$ \alpha $為變量)下泥層高度和底流濃度數學模型。然后,結合礦山實例對數學模型進行工業應用和差異性分析,研究結果表明:兩種情況下泥層高度與底流濃度均呈冪函數關系;在$ \alpha $為常數時,隨泥層高度增加,泥層高度變化率(dh/dc)逐漸減少,并且泥層高度為29.4 m時底流濃度就達到100%,與現實不符;在$ \alpha $為變量時,隨泥層高度增加,dh/dc逐漸增加,泥層越來越不容易被壓縮,該模型與現實相符合。最后,根據數學模型表達式及實際應用,將深錐濃密機中尾礦劃分為混合沉降區、減速壓縮區和極限壓縮區。泥層高度與底流濃度關系的揭示對實際生產中底流濃度的精準控制具有較好的指導意義。

     

  • 圖  1  深錐濃密機中尾礦顆粒沉降過程及受力分析示意圖

    Figure  1.  Diagram of the sedimentation process and stress analysis of tailings particles in a deep cone thickener

    圖  2  基于臨界壓縮點建立的泥層高度與濃密機半徑直角坐標系

    Figure  2.  Rectangular coordinate system of mud height and thickener radius based on the critical compression point

    圖  3  泥層高度與底流濃度關系曲線

    Figure  3.  Curves of the relationship between mud height and underflow concentration

    圖  4  壓縮系數、dh/dc與底流濃度關系曲線

    Figure  4.  Curves of the relationship between compressibility, dh/dc, and underflow concentration

    圖  5  泥層高度與底流濃度數學模型曲線示意及沉降區域劃分

    Figure  5.  Curve of the mathematical model of mud height, underflow concentration, and division of sedimentation area

    表  1  尾礦物理性質參數表

    Table  1.   Physical property parameters of tailings

    Dry density/
    (g·cm?3)
    Density/
    (g·cm?3)
    Loose density/
    (g·cm?3)
    Dense porosity/%Loose porosity/%
    2.9701.5681.00147.2066.28
    下載: 導出CSV

    表  2  數學模型關鍵參數表

    Table  2.   Key parameters of the mathematical model

    Critical compression concentration/%Underflow concentration/%Maximum mud height/mCompressibility/MPa?1Correction factor
    60.1870.013.76.870.18
    下載: 導出CSV
    久色视频
  • [1] Wang Y, Wu A X, Wang H J, et al. Dynamic thickening characteristics and mathematical model of total tailings. Rock Soil Mech, 2014, 35(Suppl 2): 168

    王勇, 吳愛祥, 王洪江, 等. 全尾膏體動態壓密特性及其數學模型. 巖土力學, 2014, 35(增刊2): 168
    [2] Cihangir F, Ercikdi B, Kesimal A, et al. Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Miner Eng, 2015, 83: 117 doi: 10.1016/j.mineng.2015.08.022
    [3] Yilmaz E, Benzaazoua M, Bussière B, et al. Influence of disposal configurations on hydrogeological behaviour of sulphidic paste tailings: A field experimental study. Int J Miner Process, 2014, 131: 12 doi: 10.1016/j.minpro.2014.08.004
    [4] Chen H J, Liu Q J. Harms and resource-like treatment of the solid wastes from metal mines. Met Mine, 2009(4): 154 doi: 10.3321/j.issn:1001-1250.2009.04.043

    陳華君, 劉全軍. 金屬礦山固體廢物危害及資源化處理. 金屬礦山, 2009(4):154 doi: 10.3321/j.issn:1001-1250.2009.04.043
    [5] Wang H J, Peng Q S. Yang Y, et al. Research status and prospect of thickening technology for metal tailings. Chinese J Chin Eng,https://doi.org/10.13374/j.issn2095-9389.2021.01.11.001

    王洪江, 彭青松, 楊瑩, 等. 金屬礦尾砂濃密技術研究現狀與展望. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2021.01.11.001
    [6] Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
    [7] Liu X H, Wu A X, Wang H J, et al. A primary discussion on the thickening law of paste-filling. Met Mine, 2009(9): 38 doi: 10.3321/j.issn:1001-1250.2009.09.007

    劉曉輝, 吳愛祥, 王洪江, 等. 膏體充填尾礦濃密規律初探. 金屬礦山, 2009(9):38 doi: 10.3321/j.issn:1001-1250.2009.09.007
    [8] Gu Z J. Application of the biggest deep cone paste thickener in domestic copper-molybdenum mine. Gold, 2010, 31(11): 43 doi: 10.3969/j.issn.1001-1277.2010.11.012

    谷志君. 最大型深錐膏體濃密機在中國銅鉬礦山的應用. 黃金, 2010, 31(11):43 doi: 10.3969/j.issn.1001-1277.2010.11.012
    [9] Farrow J B, Johnston R R M, Simic K, et al. Consolidation and aggregate densification during gravity thickening. Chem Eng J, 2000, 80(1-3): 141 doi: 10.1016/S1383-5866(00)00083-6
    [10] Zhou X, Jin X G, Liu P Z, et al. Prediction model for underflow concentration of deep cone thickener based on dynamic thickening experimentation. Met Mine, 2017(12): 39 doi: 10.3969/j.issn.1001-1250.2017.12.008

    周旭, 金曉剛, 劉培正, 等. 基于動態濃密試驗的深錐濃密機底流濃度預測模型. 金屬礦山, 2017(12):39 doi: 10.3969/j.issn.1001-1250.2017.12.008
    [11] Wang H, Liu T, Cao Y N, et al. Underflow concentration prediction model of deep-cone thickener based on data-driven. J China Univ Posts Telecommun, 2019, 26(6): 63
    [12] Fang C Y, He D K, Li K, et al. Image-based thickener mud layer height prediction with attention mechanism-based CNN. ISA Trans,https://doi.org/10.1016/j.isatra.2021.11.004
    [13] Wang Y, Wang H J, Wu A X. Mathematical model of deep cone thickener underflow concentration based on the height to diameter ratio. J Wuhan Univ Technol, 2011, 33(8): 113 doi: 10.3963/j.issn.1671-4431.2011.08.025

    王勇, 王洪江, 吳愛祥. 基于高徑比的深錐濃密機底流濃度數學模型. 武漢理工大學學報, 2011, 33(8):113 doi: 10.3963/j.issn.1671-4431.2011.08.025
    [14] Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152

    吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152
    [15] Wang X M, Zhang G Q, Zhao J W, et al. Underflow concentration prediction and external structure parameter optimization of deep cone thickener. J Chongqing Univ, 2015, 38(6): 1 doi: 10.11835/j.issn.1000-582X.2015.06.001

    王新民, 張國慶, 趙建文, 等. 深錐濃密機底流濃度預測與外部結構參數優化. 重慶大學學報, 2015, 38(6):1 doi: 10.11835/j.issn.1000-582X.2015.06.001
    [16] Du J H, Mcloughlin R, Smart R S C. Improving thickener bed density by ultrasonic treatment. Int J Miner Process, 2014, 133: 91 doi: 10.1016/j.minpro.2014.10.003
    [17] Jiao H Z, Wu Y C, Wang H, et al. Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener. Miner Eng, 2021, 173: 107043 doi: 10.1016/j.mineng.2021.107043
    [18] Hunter T N, Usher S P, Biggs S, et al. Characterization of bed densification in a laboratory scale thickener, by novel application of an acoustic backscatter system. Procedia Eng, 2015, 102: 858 doi: 10.1016/j.proeng.2015.01.206
    [19] Shao L T, Guo X X, Zheng G F. Intergranular stress, soil skeleton stress and effective stress. Chin J Geotech Eng, 2015, 37(8): 1478 doi: 10.11779/CJGE201508017

    邵龍潭, 郭曉霞, 鄭國鋒. 粒間應力、土骨架應力和有效應力. 巖土工程學報, 2015, 37(8):1478 doi: 10.11779/CJGE201508017
    [20] Li G X. On soil skeleton and seepage force. Chin J Geotech Eng, 2016, 38(8): 1522 doi: 10.11779/CJGE201608021

    李廣信. 論土骨架與滲透力. 巖土工程學報, 2016, 38(8):1522 doi: 10.11779/CJGE201608021
    [21] Lu D C, Du X L, Xu C S. Analytical solutions to principle of effective stress. Chin J Geotech Eng, 2013, 35(Suppl 1): 146

    路德春, 杜修力, 許成順. 有效應力原理解析. 巖土工程學報, 2013, 35(增刊1): 146
    [22] Yang J. Study on Compression and Strength Properties of Compacted Loess-Like Backfill [Dissertation]. Taiyuan: Taiyuan University of Technology, 2014

    楊晶. 黃土狀壓實填土壓縮和強度特性研究[學位論文] 太原: 太原理工大學, 2014
    [23] Zhan H H, Yang X S, Cai M H. Compression process and related calculation in thickener. Met Mine, 1989(11): 45

    湛含輝, 楊小生, 蔡明華. 濃密機中壓縮過程及其有關計算. 金屬礦山, 1989(11):45
    [24] Fang Y L, Ren J W, Li Y P, et al. Empirical relationship between compression coefficient and pore ratio of soil in Kaifeng area. J Yellow River Cnserv Tech Inst, 2004, 16(1): 43 doi: 10.3969/j.issn.1008-486X.2004.01.016

    方永倫, 任建偉, 李亞平, 等. 開封地區土的壓縮系數和孔隙比的經驗關系. 黃河水利職業技術學院學報, 2004, 16(1):43 doi: 10.3969/j.issn.1008-486X.2004.01.016
    [25] Wang H J, Wang Y, Wu A X, et al. Dynamic compaction and static compaction mechanism of fine unclassified tailings. J Univ Sci Technol Beijing, 2013, 35(5): 566

    王洪江, 王勇, 吳愛祥等. 細粒全尾動態壓密與靜態壓密機理. 北京科技大學學報, 2013, 35(5):566
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數:  460
  • HTML全文瀏覽量:  151
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-16
  • 網絡出版日期:  2022-03-09
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回