<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

用于CO2捕集的新型石灰煅燒過程的數值分析

張培昆 張震威 王立

張培昆, 張震威, 王立. 用于CO2捕集的新型石灰煅燒過程的數值分析[J]. 工程科學學報, 2022, 44(11): 1978-1987. doi: 10.13374/j.issn2095-9389.2021.03.22.002
引用本文: 張培昆, 張震威, 王立. 用于CO2捕集的新型石灰煅燒過程的數值分析[J]. 工程科學學報, 2022, 44(11): 1978-1987. doi: 10.13374/j.issn2095-9389.2021.03.22.002
ZHANG Pei-kun, ZHANG Zhen-wei, WANG Li. Numerical analysis of the novel lime calcination process for carbon dioxide capture[J]. Chinese Journal of Engineering, 2022, 44(11): 1978-1987. doi: 10.13374/j.issn2095-9389.2021.03.22.002
Citation: ZHANG Pei-kun, ZHANG Zhen-wei, WANG Li. Numerical analysis of the novel lime calcination process for carbon dioxide capture[J]. Chinese Journal of Engineering, 2022, 44(11): 1978-1987. doi: 10.13374/j.issn2095-9389.2021.03.22.002

用于CO2捕集的新型石灰煅燒過程的數值分析

doi: 10.13374/j.issn2095-9389.2021.03.22.002
基金項目: 國家重點研發計劃重點專項資助項目(2018YFB0605902)
詳細信息
    通訊作者:

    E-mail: pkzhang@ustb.edu.cn

  • 中圖分類號: TQ021.8;TQ021.3;TQ031.3

Numerical analysis of the novel lime calcination process for carbon dioxide capture

More Information
  • 摘要: 常規石灰煅燒工藝中燃料在煅燒窯內燃燒,石灰石分解所釋放的二氧化碳(CO2)與煙氣混合,CO2捕集需進行氣體分離。而采用CO2作為循環載氣加熱石灰石料塊的新型煅燒過程,可避免上述混合問題,從而實現直接捕集石灰石分解產生的CO2。基于CO2加熱的新型煅燒過程與常規工藝煅燒過程有較大不同,為深入理解新型煅燒過程并對其進行準確設計和有效優化,建立了基于CO2加熱的石灰煅燒過程的數學模型。基于模型對一臺產量為200 t·d?1的煅燒窯進行了模擬計算,獲得了氣固溫差、氣相流量、氣相溫度、料塊表面溫度、反應界面溫度和轉化率等關鍵參數在煅燒窯中的分布情況,并分析了進氣溫度、進氣流量和料塊半徑三個工況參數對煅燒過程的影響。

     

  • 圖  1  基于CO2循環載氣加熱的石灰煅燒工藝

    Figure  1.  Lime calcination process based on CO2 circulating carrier gas heating

    圖  2  基于CO2加熱的石灰煅燒過程的原理

    Figure  2.  Principle of the lime calcination process using CO2 heating

    圖  3  基于CO2加熱的石灰石料塊縮核反應模型

    Figure  3.  Shrinkage reaction model of the limestone particle using CO2 heating

    T—temperature; P—pressure; r —the radius of the limestone particle

    圖  4  典型工況下的煅燒窯內的參數分布。(a)溫度和溫差; (b)轉化率、氣體質量流量和反應界面壓力

    Figure  4.  Parameter profiles in the shaft kiln under typical operation conditions: (a) temperature and temperature difference; (b) conversion ratio, mass flow rate of gas, and pressure of reaction interface

    圖  5  不同進氣溫度下煅燒窯內的主要參數分布. (a)轉化率; (b)氣體溫度; (c)料塊表面溫度; (d)反應界面溫度

    Figure  5.  Profiles of main parameters in the shaft kiln at different feed gas temperatures: (a) conversion ratio; (b) gas temperature; (c) surface temperature of the particle; (d) temperature of the reaction interface

    圖  6  進氣溫度對關鍵性能參數的影響規律

    Figure  6.  Influence of the feed gas temperature on key performance parameters

    圖  7  不同進氣流量下煅燒窯內的主要參數分布. (a)轉化率; (b)氣體溫度; (c)料塊表面溫度; (d)反應界面溫度

    Figure  7.  Profiles of main parameters in the shaft kiln at different feed gas flow rates: (a) conversion ratio; (b) gas temperature; (c) surface temperature of the particle; (d) temperature of the reaction interface

    圖  8  進氣流量對關鍵性能參數的影響規律

    Figure  8.  Influence of the feed gas flow rate on key performance parameters

    圖  9  不同料塊半徑下煅燒窯內的主要參數分布. (a)轉化率; (b)氣體溫度; (c)料塊表面溫度; (d)反應界面溫度

    Figure  9.  Profiles of main parameters in the shaft kiln at different radii of the feeding limestone particle: (a) conversion ratio; (b) gas temperature; (c) surface temperature of the particle; (d) temperature of the reaction interface

    圖  10  料塊半徑對關鍵性能參數的影響規律

    Figure  10.  Influence of the radius of the feeding limestone particle on key performance parameters

    表  1  模型計算所需的參數

    Table  1.   Parameters for model calculations

    ParameterValueParameterValue
    A/m24.91$ {\sigma _0}/\left( {{\text{kW}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{K}}^{ - 4}}} \right) $5.67×10?11
    H/m7$ {\varepsilon _{\text{s}}} $0.8
    $ {m_{\text{L}}} $/(kg?s?1)3.991${{\Delta } }{h_{\text{R} } }/\left( { {\text{kJ} } \cdot {\text{mo} }{ {\text{l} }^{ - 1} } } \right)$165
    $ {r_{\text{s}}} $/m0.032$ {D_{\text{e}}}/\left( {{{\text{m}}^2} \cdot {{\text{s}}^{ - 1}}} \right) $2.16×10?6
    $ {P_g} $/Pa101325$ {\rho _{\text{L}}}/\left( {{\text{kg}} \cdot {{\text{m}}^{ - 3}}} \right) $2700
    $ \varepsilon $0.4$ {\rho _Q}/\left( {{\text{kg}} \cdot {{\text{m}}^{ - 3}}} \right) $1512
    $ R/\left( {{\text{J}} \cdot {\text{mo}}{{\text{l}}^{ - 1}} \cdot {{\text{K}}^{ - 1}}} \right) $8.314
    下載: 導出CSV

    表  2  模型的邊界條件

    Table  2.   Boundary conditions of the model

    ParameterSpecificationUnitValue
    $ {m_g}[H] $$ z = H $, the feed gas flow rate$ {\text{kg}} \cdot {{\text{s}}^{ - 1}} $11.50
    $ {T_g}[H] $$ z = H $, the feed gas temperature$ {\text{K}} $1623
    $ {P_{\text{c}}}[0] $$ z = 0 $, the initial reaction pressure$ {\text{Pa}} $101325
    $ {r_{\text{c}}}[0] $$ z = 0 $, the initial reaction radiusm0.032
    $ {T_{\text{c}}}[0] $$ z = 0 $, the initial reaction temperature$ {\text{K}} $300
    $ {T_{\text{s}}}[0] $$ z = 0 $, the surface temperature of the particle$ {\text{K}} $300
    下載: 導出CSV

    表  3  模型的主要計算結果

    Table  3.   Major results of model calculations

    ParameterSpecificationUnitValue
    $ {m_g}[0] $$ z = 0 $, the tail gas flow rate$ {\text{kg}} \cdot {{\text{s}}^{ - 1}} $13.20
    $ {T_g}[0] $$ z = 0 $, the tail gas temperature$ {\text{K}} $940.5
    $ {X_{\text{c}}}[H] $$ z = H $, the final conversion ratio%98.50
    $ \Delta {T_{\text{p}}} $$ z = {1.35_{}}{\text{m}} $, the pinch temperature difference3.71
    下載: 導出CSV
    久色视频
  • [1] Guo H J. Theory and Technology of Active Lime Production. Beijing: Chemical Industry Press, 2014

    郭漢杰. 活性石灰生產理論與工藝. 北京: 化學工業出版社, 2014
    [2] Rong W J, Li B K, Qi F S, et al. Energy and exergy analysis of an annular shaft kiln with opposite burners. Appl Therm Eng, 2017, 119: 629 doi: 10.1016/j.applthermaleng.2017.03.090
    [3] Hallak B, Herz F, Specht E, et al. Simulation of limestone calcination in normal shaft kilns-mathematical model. ZKG Int, 2015, 68(9): 66
    [4] An R, Yu B, Li R, et al. Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy, 2018, 226: 862 doi: 10.1016/j.apenergy.2018.06.044
    [5] Jiang J J, Dong K, Zhu R, et al. Carbon dioxide green and clean steelmaking technology and its application. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2021.09.23.002

    姜娟娟, 董凱, 朱榮, 等. 二氧化碳綠色潔凈煉鋼技術及應用. 工程科學學報.https://doi.org/10.13374/j.issn2095-9389.2021.09.23.002
    [6] Shan Y L, Liu Z, Guan D B. CO2 emissions from China’s lime industry. Appl Energy, 2016, 166: 245 doi: 10.1016/j.apenergy.2015.04.091
    [7] National Bureau of Statistic. China Statistical Year Book. Beijing: China Statistics Press, 2019

    國家統計局. 中國統計年鑒. 中國統計出版社, 2019
    [8] Gutiérrez A S, Martínez J B C, Vandecasteele C. Energy and exergy assessments of a lime shaft kiln. Appl Therm Eng, 2013, 51(1-2): 273 doi: 10.1016/j.applthermaleng.2012.07.013
    [9] Wang Y Y, Zhong X J. CO2 emissions and influencing factors in China’s lime industry. J Subtrop Resour Environ, 2018, 13(2): 7 doi: 10.3969/j.issn.1673-7105.2018.02.003

    王瑩瑩, 鐘小劍. 中國2004—2015年間石灰工業的CO2排放. 亞熱帶資源與環境學報, 2018, 13(2):7 doi: 10.3969/j.issn.1673-7105.2018.02.003
    [10] Chu J M, Gao S L. Manual of Metallurgical Lime Production Technology. Beijing: Metallurgical Industry Press, 2009

    初建民, 高士林. 冶金石灰生產技術手冊. 北京: 冶金工業出版社, 2009
    [11] Hallak B, Herz F, Specht E, et al. Simulation of limestone calcination in normal shaft kilns–Part 2: Influence of process parameters. ZKG Int, 2015, 68(10): 46
    [12] Hallak B, Specht E, Herz F, et al. Influence of particle size distribution on the limestone decomposition in single shaft kilns. Energy Procedia, 2017, 120: 604 doi: 10.1016/j.egypro.2017.07.192
    [13] Senega?nik A, Oman J, ?irok B. Annular shaft kiln for lime burning with kiln gas recirculation. Appl Therm Eng, 2008, 28(7): 785 doi: 10.1016/j.applthermaleng.2007.04.015
    [14] Zhou N J, Yi Z M, Zhou P, et al. Numerical simulation of the processes in lime furnace. J Central South Univ Nat Sci, 2000, 31(5): 422

    周乃君, 易正明, 周萍, 等. 石灰爐爐內過程數值仿真. 中南工業大學學報(自然科學版), 2000, 31(5):422
    [15] Shagapov V S, Burkin M V, Voronin A V, et al. Calculation of limestone burning in a coke-fired kiln. Theor Found Chem Eng, 2004, 38(4): 440 doi: 10.1023/B:TFCE.0000036974.32157.89
    [16] Bes A. Dynamic Process Simulation of Limestone Calcination in Normal Shaft Kilns [Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2006
    [17] Marias F, Bruyères B. Modelling of a biomass fired furnace for production of lime. Chem Eng Sci, 2009, 64(15): 3417 doi: 10.1016/j.ces.2009.04.022
    [18] Do D H, Specht E. Numerical simulation of heat and mass transfer of limestone decomposition in normal shaft kiln // Proceedings of ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, 2011: T10060
    [19] Gutiérrez A S, Vandecasteele C. Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production. Energy, 2011, 36(5): 2820 doi: 10.1016/j.energy.2011.02.023
    [20] Cui C, Chen Y F, Wang Y B. Numerical simulation of temperature field in gas burning shaft lime kiln. J Univ Sci Technol Liaoning, 2014, 37(3): 247 doi: 10.3969/j.issn.1674-1048.2014.03.006

    崔春, 陳永范, 王云波. 氣燒石灰豎窯內溫度場的數值模擬. 遼寧科技大學學報, 2014, 37(3):247 doi: 10.3969/j.issn.1674-1048.2014.03.006
    [21] Do D H. Simulation of Lime Calcination in Normal Shaft a Parallel Flow Regenerative Kilns [Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2012
    [22] El-Fakharany M K M. Process Simulation of Lime Calcination in Mixed Feed Shaft Kilns[Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2012
    [23] Senega?nik A, Oman J, ?irok B. Analysis of calcination parameters and the temperature profile in an annular shaft kiln. Part 1: Theoretical survey. Appl Therm Eng, 2007, 27(8-9): 1467 doi: 10.1016/j.applthermaleng.2006.10.001
    [24] Liu G H, Cui G M, Xie B, et al. Numerical simulation study on the calcination process of a dual-chamber lime kiln with parallel heat storage. J Eng Therm Energy Power, 2019, 34(6): 100

    劉國輝, 崔國民, 謝斌, 等. 并流蓄熱式雙膛石灰窯煅燒過程數值模擬研究. 熱能動力工程, 2019, 34(6):100
    [25] Bluhm-Drenhaus T, Simsek E, Wirtz S, et al. A coupled fluid dynamic-discrete element simulation of heat and mass transfer in a lime shaft kiln. Chem Eng Sci, 2010, 65(9): 2821 doi: 10.1016/j.ces.2010.01.015
    [26] Krause B, Liedmann B, Wiese J, et al. Coupled three dimensional DEM–CFD simulation of a lime shaft kiln—Calcination, particle movement and gas phase flow field. Chem Eng Sci, 2015, 134: 834 doi: 10.1016/j.ces.2015.06.002
    [27] Krause B, Liedmann B, Wiese J, et al. 3D-DEM-CFD simulation of heat and mass transfer, gas combustion and calcination in an intermittent operating lime shaft kiln. Int J Therm Sci, 2017, 117: 121 doi: 10.1016/j.ijthermalsci.2017.03.017
    [28] Iliuta I, Dam-Johansen K, Jensen L S. Mathematical modeling of an in-line low-NOx calciner. Chem Eng Sci, 2002, 57(5): 805 doi: 10.1016/S0009-2509(01)00420-1
    [29] Chuan C, Specht E, Kehse G. Influences of the origin and material properties of limestone on its decomposition behaviour in shaft kilns. ZKG Int, 2007, 60(1): 51
    [30] Zhou J Q. Heat Trasfer. Beijing: Metallurgical Industry Press, 1999

    周筠清. 傳熱學. 北京: 冶金工業出版社, 1999
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  590
  • HTML全文瀏覽量:  284
  • PDF下載量:  85
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-22
  • 網絡出版日期:  2021-05-26
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回