Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring
-
摘要: AFT氧化風機房是脫硫工藝中的一種鋼筋混凝土結構支撐鋼罐的復合結構,結構產生的明顯振動不利于正常生產運營,因此針對AFT結構進行現場監測和模擬計算。首先對AFT結構進行現場調查,基于一種AFT結構視頻監測與局部監測相結合的方法對其進行監測,隨后又提出簡化攪拌機及氧化風作用的模擬方法,通過數值模擬對AFT結構振動特性進行研究。結果表明:對AFT結構進行視頻監測可快速明確結構運動軌跡;局部監測結果表明攪拌機作用是結構振動的主要因素,氧化風的鼓入加劇了結構振動響應,因此造成了結構各柱間填充墻不同程度的損傷;將數值模擬結果與監測結果對比,驗證了簡化攪拌機及氧化風作用的計算方法,可為分析此類結構振動響應、損傷機制以及加固設計提供參考。Abstract: An AFT oxidation fan room is a kind of composite structure of reinforced concrete structure supporting the steel tank in the desulfurization process. It is a common structural form of a power plant. The obvious vibration generated by the structure is not conducive to the normal production and operation of the power plant and may even cause accidents. Therefore, on-site monitoring and a simulation calculation are carried out for the AFT structure to study the causes of vibration of the AFT structure and clarify its vibration mechanism. First, a field investigation of the AFT structure is carried out combining video monitoring and local structure vibration monitoring. Based on the simulation method of the fluid-solid interaction, a simulation method to simplify the action of the mixer and the oxidation wind in the steel tank is then proposed, and the vibration characteristics of the AFT structure are further studied through the proposed numerical simulation method. Finally, numerical simulation results are compared with the monitoring results, and causes of vibration differences in various parts of the structure are studied. Results show that video monitoring can quickly identify the structure movement track. Local monitoring results show that the mixer is the main factor of the structural vibration, and the aeration of the oxidation wind intensifies the structural vibration response, causing different degrees of damage to the infill wall between the columns of the structure. The dynamic response law of different positions of each column and the upper steel tank of the structure is found to be more different. A comparison of numerical simulation results with monitoring results verified the calculation method of simplifying the mixer and the oxidation wind effect, providing a reference for the analysis of the vibration response, damage mechanism, and reinforcement design of such structures.
-
圖 15 沿罐高位移及加速度時程曲線。(a)工況b沿罐高的x向位移時程;(b)工況d沿罐高的位移時程;(c)工況b沿罐高加速度時程;(d)工況d沿罐高加速度時程
Figure 15. Displacement and acceleration time history curves along the tank height: (a) x-direction displacement time history of Conditionb along the tank height; (b) displacement time history of Conditiond along the tank height; (c) acceleration time history of working Conditionb along the tank height; (d) acceleration time history of working Conditiond along the tank height
表 1 模型計算參數
Table 1. Model calculation parameters
Material Elastic modulus/Pa Density/(kg·m?3) Poisson's ratio Concrete 3.1×1010 2550 0.2 Steel 2.06×1011 7850 0.3 Material Viscosity Density Fluid 0.02 1250 表 2 加載工況對比表
Table 2. Comparison of the loading case
Working condition If there is oxidation wind Simulation loading size of mixer/(m·s?1) a No 1 b Yes 1 c No 2 d Yes 2 -
參考文獻
[1] Li Y, Yang Z Z. Influence of key factors on lime-gypsum wet flue gas desulfurization and two circulations per tower technology. Environ Eng, 2016, 34(1): 69李元, 楊志忠. 濕法煙氣脫硫關鍵影響因素及新型單塔雙循環技術. 環境工程, 2016, 34(1):69 [2] Han P, Mao X J, Zhou L H, et al. Mechanism modeling for forced oxidation system of flue gas desulfurization device. J North China Electr Power Univ, 2006, 33(5): 60韓璞, 毛新靜, 周黎輝, 等. 濕法煙氣脫硫中強制氧化系統的機理建模. 華北電力大學學報, 2006, 33(5):60 [3] Chen J. Single-and Multi-Phase Flow Dynamics Simulations of the Side-Entering Stirred Reactors [Dissertation]. Shanghai: East China University of Science and Technology, 2013陳佳. 側進式攪拌反應器內均相及多相流體動力學的數值研究[學位論文]. 上海: 華東理工大學, 2013 [4] Xu G H, Gu X K. Investigation to the numerical simulation approach for sloshing in tanks considering fluid–structure interaction. J Ship Mech, 2012, 16(5): 514 doi: 10.3969/j.issn.1007-7294.2012.05.008徐國徽, 顧學康. 液艙晃蕩載荷數值模擬中的流固耦合影響研究. 船舶力學, 2012, 16(5):514 doi: 10.3969/j.issn.1007-7294.2012.05.008 [5] Xu Y X, Shao C F, Zheng D J, et al. Diagnosis of abnormal structural vibration for Xiaoshunjiang pumping station // 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Florida, 2016: 943 [6] Ding Y, Ma R, Li N. A simulation model for three-dimensional coupled wave-current flumes. Eng Mech, 2015, 32(10): 68 doi: 10.6052/j.issn.1000-4750.2014.03.0190丁陽, 馬瑞, 李寧. 三維波流耦合水槽模擬模型. 工程力學, 2015, 32(10):68 doi: 10.6052/j.issn.1000-4750.2014.03.0190 [7] Shi Y, Shu G Q, Bi F R. Acoustic characteristics simulation of engine exhaust muffler based on CFD. J Vib Eng, 2011, 24(2): 205 doi: 10.3969/j.issn.1004-4523.2011.02.016石巖, 舒歌群, 畢鳳榮. 基于計算流體動力學的內燃機排氣消聲器聲學特性仿真. 振動工程學報, 2011, 24(2):205 doi: 10.3969/j.issn.1004-4523.2011.02.016 [8] Bigoni C, Hesthaven J S. Simulation-based anomaly detection and damage localization: An application to structural health monitoring. Comput Methods Appl Mech Eng, 2020, 363: 112896 doi: 10.1016/j.cma.2020.112896 [9] Limongelli M P, Giordano P F. Vibration-based damage indicators: A comparison based on information entropy. J Civ Struct Heal Monit, 2020, 10(2): 251 doi: 10.1007/s13349-020-00381-9 [10] Wang X. The Reaction Process and Optimization of Flow Field in Slurry Pond of WFGD Towers [Dissertation]. Guangzhou: South China University of Technology, 2016王旭. 濕法煙氣脫硫塔漿液池內反應過程及流場優化[學位論文]. 廣州: 華南理工大學, 2016 [11] Zhang C W. Analytical study of transient coupling between vessel motion and liquid sloshing in multiple tanks. J Eng Mech, 2016, 142(7): 04016034 doi: 10.1061/(ASCE)EM.1943-7889.0001085 [12] Lu S S, Zhang Z F, Liu J B, et al. Passive suction and blowing flow control of wind-induced vibration of tall buildings. J Vib Shock, 2021, 40(11): 7盧姍姍, 張志富, 劉金博, 等. 高層建筑結構風致振動的被動吸吹氣流動控制研究. 振動與沖擊, 2021, 40(11):7 [13] Li Z L, Zhang L Z, Zhu X D, et al. Design and validation of wireless dynamic testing system for bridge based on the 941B type vibration sensor // Ninth International Conference of Chinese Transportation Professionals (ICCTP). Harbin, 2009: 1 [14] Shi Y C, Li S Q, Li Z X, et al. Rapid evaluation method for blast damage of reinforced concrete columns based on measured frequency. J Build Struct, 2021, 42(11): 155師燕超, 李紹琦, 李忠獻, 等. 基于實測頻率的鋼筋混凝土柱爆炸損傷快速評估方法. 建筑結構學報, 2021, 42(11):155 [15] Jiang X L, Zhang C X, Jiang N, et al. Shaking table test method for equipment-structure dynamic interaction. J Vib Shock, 2019, 38(3): 108姜忻良, 張崇祥, 姜南, 等. 設備-結構動力相互作用振動臺試驗方法研究. 振動與沖擊, 2019, 38(3):108 [16] Guo J, Zhu C A. Dynamic displacement measurement of large-scale structures based on the Lucas–Kanade template tracking algorithm. Mech Syst Signal Process, 2016, 66-67: 425 doi: 10.1016/j.ymssp.2015.06.004 [17] Zhao C, Zhao J Y, Sun Q, et al. A study on identification of dynamic characteristic parameters of a transmission tower under ambient excitations. J Vib Shock, 2021, 40(4): 30趙超, 趙家鈺, 孫清, 等. 環境激勵下輸電塔動力特性參數識別. 振動與沖擊, 2021, 40(4):30 [18] Zhu B R, Sun C, Huang Y. Ice-induced vibration response analysis of monopile offshore wind turbine. China Civ Eng J, 2021, 54(1): 88朱本瑞, 孫超, 黃焱. 海上單樁風機結構冰激振動響應分析. 土木工程學報, 2021, 54(1):88 [19] Dong X F, Lian J J, Wang H J. Monitoring experiment and characteristic analysis of structural vibration of offshore wind turbine. J Tianjin Univ (Sci Technol) , 2019, 52(2): 191董霄峰, 練繼建, 王海軍. 海上風機結構振動監測試驗與特性分析. 天津大學學報(自然科學與工程技術版), 2019, 52(2):191 [20] Wang Y L, Yue Q J, Bi X J, et al. Ice-induced vibration control effectiveness evaluation for an offshore platform based on a field monitoring. J Vib Shock, 2012, 31(7): 39 doi: 10.3969/j.issn.1000-3835.2012.07.009王延林, 岳前進, 畢祥軍, 等. 基于現場監測的海洋平臺冰振控制效果評價. 振動與沖擊, 2012, 31(7):39 doi: 10.3969/j.issn.1000-3835.2012.07.009 [21] Soman R, Kyriakides M, Onoufriou T, et al. Numerical evaluation of multi-metric data fusion based structural health monitoring of long span bridge structures. Struct Infrastructure Eng, 2018, 14(6): 673 doi: 10.1080/15732479.2017.1350984 [22] Zhu B, Jiang N, Zhou C B, et al. Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit. J Vib Shock, 2020, 39(11): 201朱斌, 蔣楠, 周傳波, 等. 基坑開挖爆破作用鄰近壓力燃氣管道動力響應特性研究. 振動與沖擊, 2020, 39(11):201 [23] Qarib H, Mohamed D. Analysis, prediction, and mitigation of vortex induced vibrations in substation structures // Electrical Transmission and Substation Structures 2018. Atlanta, 2018: 191 [24] Wu Q Q, Zhang L K, Ma Z Y, et al. Vibration characteristics of the unit–plant structure of a hydropower station under transient load-up process. J Vib Shock, 2019, 38(18): 53吳嵌嵌, 張雷克, 馬震岳, 等. 水電站機組–廠房結構突增負荷過渡過程振動特性研究. 振動與沖擊, 2019, 38(18):53 [25] Chen G G, Zhang L J, Bai Y, et al. Numerical simulation of the influence of the agitator parameter on the field characteristics and the power in a side-entering stirred reactor. J Beijing Univ Chem Technol (Nat Sci Ed) , 2012, 39(3): 29陳功國, 張林進, 柏楊, 等. 側入式攪拌槽中槳葉參數對流場及功率影響的數值模擬. 北京化工大學學報(自然科學版), 2012, 39(3):29 -