<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

石墨烯基超疏水材料制備及其應用研究進展

王鑫磊 魏世丞 朱曉瑩 王博 郭蕾 王玉江 梁義 徐濱士

王鑫磊, 魏世丞, 朱曉瑩, 王博, 郭蕾, 王玉江, 梁義, 徐濱士. 石墨烯基超疏水材料制備及其應用研究進展[J]. 工程科學學報, 2021, 43(3): 332-344. doi: 10.13374/j.issn2095-9389.2020.09.25.001
引用本文: 王鑫磊, 魏世丞, 朱曉瑩, 王博, 郭蕾, 王玉江, 梁義, 徐濱士. 石墨烯基超疏水材料制備及其應用研究進展[J]. 工程科學學報, 2021, 43(3): 332-344. doi: 10.13374/j.issn2095-9389.2020.09.25.001
WANG Xin-lei, WEI Shi-cheng, ZHU Xiao-ying, WANG Bo, GUO Lei, WANG Yu-jiang, LIANG Yi, XU Bin-shi. Research progress in the preparation and application of graphene-based superhydrophobic materials[J]. Chinese Journal of Engineering, 2021, 43(3): 332-344. doi: 10.13374/j.issn2095-9389.2020.09.25.001
Citation: WANG Xin-lei, WEI Shi-cheng, ZHU Xiao-ying, WANG Bo, GUO Lei, WANG Yu-jiang, LIANG Yi, XU Bin-shi. Research progress in the preparation and application of graphene-based superhydrophobic materials[J]. Chinese Journal of Engineering, 2021, 43(3): 332-344. doi: 10.13374/j.issn2095-9389.2020.09.25.001

石墨烯基超疏水材料制備及其應用研究進展

doi: 10.13374/j.issn2095-9389.2020.09.25.001
基金項目: 國家自然科學基金資助項目(51905543,51675533和51701238);國防科技卓越青年科學基金資助項目(2017-JCJQ-ZQ-001);“十三五”裝備預研共用技術資助項目(404010205);中國博士后科學基金資助項目(2018M643857)
詳細信息
    通訊作者:

    E-mail:wangbobo421@163.com

  • 中圖分類號: TB34

Research progress in the preparation and application of graphene-based superhydrophobic materials

More Information
  • 摘要: 超疏水表面是具有獨特性能的一類表面,本身就具有廣泛應用前景。石墨烯材料作為理化性質出眾的一類材料,由于其高電導率、高導熱系數、高比表面積、高透光率和有優異的機械性能,廣泛應用于航空航天、石油化工、海洋船舶等領域。目前,基于石墨烯材料構建超疏水表面,是超疏水表面研究中一個較新的方向。本文對超疏水表面的原理進行了概述,重點總結歸納了石墨烯基超疏水材料制備技術的研究現狀,包括表面修飾法、沉積改性法、激光誘導法、涂覆法、層層自組裝法等,簡要介紹了石墨烯超疏水材料在自清潔、油水分離、防覆冰、耐腐蝕、抗菌等領域的應用,并對石墨烯超疏水材料的下一步研究方向進行了展望。

     

  • 圖  1  材料表面常見潤濕性模型示意圖。(a)Young’s模型;(b)Wenzel模型;(c)Cassie模型;(d)Wenzel?Cassie共存模型

    Figure  1.  Schematic of common wettability models on material surfaces: (a) Young’s model; (b) Wenzel model; (c) Cassie model; (d) Wenzel-Cassie coexistence model

    圖  2  (a)NH2?PDMS?NH2與GO分子鏈之間反應形成PDMS橋狀結構示意圖;GO(b)和GO?g-Arc-PDMS(c)的表面原子力顯微鏡高度圖[31]

    Figure  2.  (a) Reaction between GO and NH2?PDMS?NH2 macromolecular chains to form arc-like PDMS bridge architecture surface; AFM height images for GO (b) and GO-g-Arc PDMS (c)[31]

    圖  3  不同質量比的mGO/PDMS復合涂層在聚氨酯纖維上的掃描電鏡圖[32]。(a)0;(b)0.1;(c)0.25;(d)0.5

    Figure  3.  SEM of mGO/PDMS hybrid coating on polyester fabrics with different mass ratios[32]: (a) 0; (b) 0.1; (c) 0.25; (d) 0.5

    圖  4  (a)石墨烯沉積的不銹鋼網面;(b)石墨烯修飾不銹鋼網的掃描電鏡圖像[35];(c)松果狀石墨烯復合涂層;(d)松果狀石墨烯復合涂層放大圖[36];(e)花瓣形態石墨烯[41]

    Figure  4.  (a) Graphene-deposited stainless steel mesh; (b) SEM of graphene-modified stainless steel mesh[35]; (c) pinecone-like graphene composite coating; (d) magnified pinecone-like graphene composite coating[36]; (e) petal morphology graphene[41]

    圖  5  簡要流程圖[46]。(a)激光誘導過程;(b)預碳化過程;(c)模型化誘導過程;(d)掃描激光束工作流程;(e)預碳化聚酰亞胺(PI)膜的光學圖;(f)經模型碳化的光學圖;(g)芋葉的掃描電鏡圖

    Figure  5.  Brief flow chart[46]: (a) laser induction process; (b) pre-carbonization process; (c) modeling induction process; (d) scanning laser beam workflow; (e) optical diagram of pre-carbonized PI film; (f) model carbonized optical image; (g) SEM image of taro leaf

    圖  6  (a)激光照射示意圖;(b)以0.3 W功率照射時形成的石墨烯表面結構掃描電鏡圖;(c)放大的掃描電鏡圖和接觸角圖(BS:分光鏡,RF:反射鏡)[47]

    Figure  6.  (a) Schematic of laser irradiation; (b) SEM of the graphene surface structure formed by 0.3 W power; (c) magnified SEM and contact angle image (BS: beam splitter, RF: mirror) [47]

    圖  7  (a)石墨烯;(b,c)在0.5 mg·mL?1聚多巴胺改性石墨烯上生長的納米二氧化硅;(d,e)在1 mg·mL?1聚多巴胺改性石墨烯上生長的納米二氧化硅;(f)物理混合的石墨烯和二氧化硅[56]

    Figure  7.  (a) Graphene; (b,c) nano-silica grown on 0.5 mg·mL?1 L PDA modified graphene; (d,e) nano-silica grown on 1 mg·mL?1 PDA modified graphene; (f) physically mixed graphene and silica[56]

    圖  8  (a)自組裝涂層組裝過程示意圖[60];(b)三明治狀的UIO-66-F4@rGO雜化體[61];(c)組裝涂層的掃描電鏡剖面圖[62]

    Figure  8.  (a) Schematic diagram of the self-assembly coating assembly process[60]; (b) sandwich-like UIO-66-F4@rGO Hybrid[61]; (c) cross-sectional SEM of the assembled caoting[62]

    圖  9  自清潔能力對比實驗[39]。(a)純DLC膜;(b)Ni/a-C:H膜;(c)G-Ni/a-C:H膜

    Figure  9.  Self-cleaning ability comparison experiment[39]: (a) pure DLC film; (b) Ni/a-C:H film; (c) G-Ni/a-C:H film

    圖  10  不同溫度條件下延遲結冰時間圖[64]

    Figure  10.  Delayed freezing time diagram under different temperature conditions[64]

    圖  11  石墨烯基超疏水聚氨酯材料油水分離測試圖。(a)輕油;(b)重油[32];(c~e)分別為MASHGO添加前、中、后的油水分離實驗圖及局部掃描電鏡圖[65]

    Figure  11.  Graphene-based super-hydrophobic polyurethane material oil?water separation test: (a) light oil; (b) heavy oil[32]; (c?e) are the oil-water separation experiment and partial SEM before, during, and after MASHGO addition[65]

    圖  12  鹽霧試驗照片。純環氧樹脂168 h(a)和336 h(b);磷酸鋅改性氧化石墨烯環氧樹脂168 h(c)和336 h(d)[66]

    Figure  12.  Visual state of salt spray test: 168 h (a) and 336 h (b) of blank epoxy resin; 168 h (c) and 336 h (d) of epoxy/GO-ZnP[66]

    圖  13  大腸桿菌菌落圖及其掃描電鏡圖[69]. 未經陽光照射的PDMS(a,d),玻璃(b,e)和石墨烯涂層(c,f);經10 min陽光照射的PDMS(g,j);玻璃(h,k);石墨烯涂層(i,l)

    Figure  13.  Colony of Escherichia coli and its SEM[69]: PDMS (a,d), glass (b,e), and graphene-coated glass (c,f) without sunlight glass; PDMS (g,j), glass (h,k), and graphene-coated glass (i,l) after 10 minutes of sunlight glass

    久色视频
  • [1] Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14(24): 1857 doi: 10.1002/adma.200290020
    [2] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1
    [3] Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair. Nature, 2000, 405(6787): 681 doi: 10.1038/35015073
    [4] Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414(6859): 33 doi: 10.1038/35102108
    [5] Gao X F, Jiang L. Biophysics: water-repellent legs of water striders. Nature, 2004, 432(7013): 36 doi: 10.1038/432036a
    [6] Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: From fabrication to applications. Nanoscale, 2017, 9(10): 3338 doi: 10.1039/C7NR00096K
    [7] Latthe S S, Sutar R S, Kodag V S, et al. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog Org Coat, 2019, 128: 52 doi: 10.1016/j.porgcoat.2018.12.008
    [8] Bai X G, Shen Y Q, Tian H F, et al. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation. Sep Purif Technol, 2019, 210: 402 doi: 10.1016/j.seppur.2018.08.010
    [9] Cui M K, Mu P, Shen Y Q, et al. Three-dimensional attapulgite with sandwich-like architecture used for multifunctional water remediation. Sep Purif Technol, 2020, 235: 116210 doi: 10.1016/j.seppur.2019.116210
    [10] He Z K, Ma M, Xu X C, et al. Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates. Appl Surf Sci, 2012, 258(7): 2544 doi: 10.1016/j.apsusc.2011.10.090
    [11] Feng L B, Che Y H, Liu Y H, et al. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method. Appl Surf Sci, 2013, 283: 367 doi: 10.1016/j.apsusc.2013.06.117
    [12] Wang B, Guo Z G. Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl Phys Lett, 2013, 103(6): 063704 doi: 10.1063/1.4817922
    [13] Liu Y, Yin X M, Zhang J J, et al. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate. Appl Surf Sci, 2013, 280: 845 doi: 10.1016/j.apsusc.2013.05.072
    [14] Liu F, Wang S L, Zhang M, et al. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Appl Surf Sci, 2013, 280: 686 doi: 10.1016/j.apsusc.2013.05.043
    [15] Park E J, Sim J K, Jeong M G, et al. Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles. RSC Adv, 2013, 3(31): 12571 doi: 10.1039/c3ra42402b
    [16] Liu X M, He J H. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces. Langmuir, 2009, 25(19): 11822 doi: 10.1021/la901426r
    [17] Zheng Y S, He Y, Qing Y Q, et al. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating. Appl Surf Sci, 2012, 258(24): 9859 doi: 10.1016/j.apsusc.2012.06.043
    [18] Ji S, Ramadhianti P A, Nguyen T B, et al. Simple fabrication approach for superhydrophobic and superoleophobic Al surface. Microelectron Eng, 2013, 111: 404 doi: 10.1016/j.mee.2013.04.010
    [19] Tong W, Xiong D S. Bioinspired superhydrophobic materials: Progress and functional application. J Inorg Mater, 2019, 34(11): 1133

    佟威, 熊黨生. 仿生超疏水表面的發展及其應用研究進展. 無機材料學報, 2019, 34(11):1133
    [20] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530 doi: 10.1126/science.1158877
    [21] Young T. An essay on the cohesion of fluids. Philos Trans R Soc London, 1805, 95: 65 doi: 10.1098/rstl.1805.0005
    [22] Wenzel R N. Resistance of solid surfaces to wetting by water. Trans Faraday Soc, 1936, 28(8): 988
    [23] Oner D, McCarthy T J. Ultrahydrophobic surfaces: Effects of topography and length scales on wettability. Langmuir, 2000, 16(20): 7777 doi: 10.1021/la000598o
    [24] Li H J, Wang X B, Song Y L, et al. Super-"Amphiphobic" aligned carbon nanotube films. Angew Chem, 2001, 113(9): 1793 doi: 10.1002/1521-3757(20010504)113:9<1793::AID-ANGE17930>3.0.CO;2-I
    [25] A J, S Jayan J S, Saritha A, et al. Superhydrophobic graphene-based materials with self-cleaning and anticorrosion performance: An appraisal of neoteric advancement and future perspectives. Colloids Surf A, 2020, 606: 125395 doi: 10.1016/j.colsurfa.2020.125395
    [26] Chen Z X, Dong L, Yang D, et al. Superhydrophobic graphene-based materials: Surface construction and functional applications. Adv Mater, 2013, 25(37): 5352 doi: 10.1002/adma.201302804
    [27] Nguyen-Tri P, Tran H N, Plamondon C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog Org Coat, 2019, 132: 235 doi: 10.1016/j.porgcoat.2019.03.042
    [28] Hooda A, Goyat M S, Pandey J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog Org Coat, 2020, 142: 105557 doi: 10.1016/j.porgcoat.2020.105557
    [29] Dalawai S P, Aly M A S, Latthe S S, et al. Recent advances in durability of superhydrophobic self-cleaning technology A critical review. Prog Org Coat, 2020, 138: 105381 doi: 10.1016/j.porgcoat.2019.105381
    [30] Liu H D, Ying Q, Jia F, et al. Preparation and characterization of surperhydrophobic foam modified by graphene oxide. Poly Mater Sci Eng, 2016, 32(4): 115

    劉海東, 應琴, 賈飛, 等. 石墨烯改性聚氨酯超疏水泡沫的制備與表征. 高分子材料科學與工程, 2016, 32(4):115
    [31] Mo Z H, Luo Z, Huang Q, et al. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties. Appl Surf Sci, 2018, 440: 359 doi: 10.1016/j.apsusc.2017.12.268
    [32] Liao X F, Li H Q, Zhang L, et al. Superhydrophobic mGO/PDMS hybrid coating on polyester fabric for oil/water separation. Prog Org Coat, 2018, 115: 172 doi: 10.1016/j.porgcoat.2017.12.001
    [33] He S J, Zhan Y Q, Zhao S M, et al. Design of stable super-hydrophobic/super-oleophilic 3D carbon fiber felt decorated with Fe3O4 nanoparticles: Facial strategy, magnetic drive and continuous oil/water separation in harsh environments. Appl Surf Sci, 2019, 494: 1072 doi: 10.1016/j.apsusc.2019.07.258
    [34] Saharudin K A, Karim M A, Sreekantan S. Preparation of a polydimethylsiloxane (PDMS)/graphene-based super-hydrophobic coating. Mater Today Proc, 2019, 17: 752 doi: 10.1016/j.matpr.2019.06.359
    [35] Tang W J, Sun D, Liu S H, et al. One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation. Sep Purif Technol, 2020, 236: 116293 doi: 10.1016/j.seppur.2019.116293
    [36] Bai Z G, Zhang B. Fabrication of superhydrophobic reduced-graphene oxide/nickel coating with mechanical durability, self-cleaning and anticorrosion performance. Nano Mater Sci, 2020, 2(2): 151 doi: 10.1016/j.nanoms.2019.05.001
    [37] Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel. Mater Des, 2017, 117: 280 doi: 10.1016/j.matdes.2016.12.084
    [38] Liang J F, Wu X W, Ling Y H, et al. Trilaminar structure hydrophobic graphene oxide decorated organosilane composite coatings for corrosion protection. Surf Coat Technol, 2018, 339: 65 doi: 10.1016/j.surfcoat.2018.02.002
    [39] Zhu X B, Zhou S G, Yan Q Q, et al. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity. Chem Phys, 2018, 505: 19 doi: 10.1016/j.chemphys.2018.03.008
    [40] Jena G, Thinaharan C, George R P, et al. Robust nickel-reduced graphene oxide-myristic acid superhydrophobic coating on carbon steel using electrochemical codeposition and its corrosion resistance. Surf Coat Technol, 2020, 397: 125942 doi: 10.1016/j.surfcoat.2020.125942
    [41] Yoon J C, Yoon C S, Lee J S, et al. Lotus leaf-inspired CVD grown graphene for a water repellant flexible transparent electrode. Chem Commun, 2013, 49(90): 10626 doi: 10.1039/c3cc46156d
    [42] Zheng Z H, Liu Y, Bai Y, et al. Fabrication of biomimetic hydrophobic patterned graphene surface with ecofriendly anti-corrosion properties for Al alloy. Colloids Surf A, 2016, 500: 64 doi: 10.1016/j.colsurfa.2016.04.008
    [43] Ong C C, Saheed M S M, Mohamed N M, et al. Highly hydrophobic 3D graphene-carbon nanotubes composite film for oil absorption. Mater Today Proc, 2019, 16: 1772 doi: 10.1016/j.matpr.2019.06.048
    [44] Li Y L, Luong D X, Zhang J B, et al. Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater, 2017, 29(27): 1700496 doi: 10.1002/adma.201700496
    [45] Nasser J, Lin J J, Zhang L S, et al. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces. Carbon, 2020, 162: 570 doi: 10.1016/j.carbon.2020.03.002
    [46] Wu W B, Liang R X, Lu L S, et al. Preparation of superhydrophobic laser-induced graphene using taro leaf structure as templates. Surf Coat Technol, 2020, 393: 125744 doi: 10.1016/j.surfcoat.2020.125744
    [47] Wang J N, Shao R Q, Zhang Y L, et al. Biomimetic graphene surfaces with superhydrophobicity and iridescence. Chem Asian J, 2012, 7(2): 301 doi: 10.1002/asia.201100882
    [48] Song Y Y, Liu Y, Jiang H B, et al. Biomimetic super hydrophobic structured graphene on stainless steel surface by laser processing and transfer technology. Surf Coat Technol, 2017, 328: 152 doi: 10.1016/j.surfcoat.2017.08.031
    [49] Wan Y L, Cui P, Xu L N, et al. Anti-icing performance of micro-nano composite texture based on image processing technology. Surf Technol, 2019, 48(8): 54

    彎艷玲, 崔普, 徐麗寧, 等. 基于圖像處理技術界定微納復合織構防覆冰性能. 表面技術, 2019, 48(8):54
    [50] Jiang H B, Zhang Y L, Han D D, et al. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv Funct Mater, 2014, 24(29): 4720 doi: 10.1002/adfm.201470194
    [51] Shateri-Khalilabad M, Yazdanshenas M E. Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 2013, 20(2): 963 doi: 10.1007/s10570-013-9873-y
    [52] Zhang X T, Liu D Y, Ma Y L, et al. Super-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation performance. Appl Surf Sci, 2017, 422: 116 doi: 10.1016/j.apsusc.2017.06.009
    [53] Peng M, Chen G Q, Zeng G M, et al. Superhydrophobic kaolinite modified graphene oxide-melamine sponge with excellent properties for oil-water separation. Appl Clay Sci, 2018, 163: 63 doi: 10.1016/j.clay.2018.07.008
    [54] Lü C J, Wang H Y, Liu Z J, et al. Fabrication of durable fluorine-free polyphenylene sulfide/silicone resin composite superhydrophobic coating enhanced by carbon nanotubes/graphene fillers. Prog Org Coat, 2019, 134: 1 doi: 10.1016/j.porgcoat.2019.04.042
    [55] Uzoma P C, Liu F C, Xu L, et al. Superhydrophobicity, conductivity and anticorrosion of robust siloxane-acrylic coatings modified with graphene nanosheets. Prog Org Coat, 2019, 127: 239 doi: 10.1016/j.porgcoat.2018.11.018
    [56] Zhang X G, Liu Z J, Li Y, et al. Robust superhydrophobic epoxy composite coating prepared by dual interfacial enhancement. Chem Eng J, 2019, 371: 276 doi: 10.1016/j.cej.2019.04.040
    [57] Wang P, Yao T, Sun B, et al. A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated graphene. Colloids Surf A, 2017, 513: 396 doi: 10.1016/j.colsurfa.2016.11.002
    [58] Liu Y, Zhang J J, Li S Y, et al. Fabrication of a superhydrophobic graphene surface with excellent mechanical abrasion and corrosion resistance on an aluminum alloy substrate. RSC Adv, 2014, 4(85): 45389 doi: 10.1039/C4RA06051B
    [59] Chen N N, Wang Y H, Zhong L, et al. Anticorrosion performance of super-hydrophobic complex film of graphene/stearic acid on AZ91 Mg-alloy. J Mater Res, 2017, 31(10): 751 doi: 10.11901/1005.3093.2016.617

    陳寧寧, 王燕華, 鐘蓮, 等. 石墨烯/硬脂酸超疏水復合膜層的防腐性能. 材料研究學報, 2017, 31(10):751 doi: 10.11901/1005.3093.2016.617
    [60] Wang Y, Yu Y, Hu X B, et al. p-phenylenediamine strengthened graphene oxide for the fabrication of superhydrophobic surface. Mater Des, 2017, 127: 22 doi: 10.1016/j.matdes.2017.04.033
    [61] Zhang Y Q, He S J, Hu J X, et al. Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F4@rGO composites for efficient and multitasking oil/water separation applications. J Hazard Mater, 2020, 388: 121752 doi: 10.1016/j.jhazmat.2019.121752
    [62] Sin Y Y, Huang C C, Lin C N, et al. Ultrastrong adhesion of fluorinated graphene on a substrate: In situ electrochemical conversion to ionic-covalent bonding at the interface. Carbon, 2020, 169: 248 doi: 10.1016/j.carbon.2020.07.067
    [63] Wang P, Yao T, Li Z Q, et al. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. Compos Sci Technol, 2020, 198: 108307 doi: 10.1016/j.compscitech.2020.108307
    [64] Akhtar N, Anemone G, Farias D, et al. Fluorinated graphene provides long lasting ice inhibition in high humidity. Carbon, 2019, 141: 451 doi: 10.1016/j.carbon.2018.09.008
    [65] Das A, Maji K, Naskar S, et al. Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chem Sci, 2020, 11(25): 6556 doi: 10.1039/D0SC00517G
    [66] Sadeghian Z, Hadidi M R, Salehzadeh D, et al. Hydrophobic octadecylamine-functionalized graphene/TiO2 hybrid coating for corrosion protection of copper bipolar plates in simulated proton exchange membrane fuel cell environment. Int J Hydrogen Energy, 2020, 45(30): 15380 doi: 10.1016/j.ijhydene.2020.04.015
    [67] Asaldoust S, Hosseini M S, Ramezanzadeh B, et al. Construction of a unique anti-corrosion nanocomposite based on graphene oxide@Zn3PO4/epoxy; experimental characterization and detailed-theoretical quantum mechanics (QM) investigations. Constr Build Mater, 2020, 256: 119439 doi: 10.1016/j.conbuildmat.2020.119439
    [68] Ouadil B, Amadine O, Essamlali Y, et al. A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite. Colloids Surf A, 2019, 579: 123713 doi: 10.1016/j.colsurfa.2019.123713
    [69] Jiang N, Wang Y L, Chan K C, et al. Additive manufactured graphene coating with synergistic photothermal and superhydrophobic effects for bactericidal applications. Global Challenges, 2019, 4(1): 1900054
  • 加載中
圖(13)
計量
  • 文章訪問數:  7311
  • HTML全文瀏覽量:  1451
  • PDF下載量:  166
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-25
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回