<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

納米技術在鎂質耐火材料中應用的研究進展

趙嘉亮 羅旭東 陳俊紅 謝志鵬

趙嘉亮, 羅旭東, 陳俊紅, 謝志鵬. 納米技術在鎂質耐火材料中應用的研究進展[J]. 工程科學學報, 2021, 43(1): 76-84. doi: 10.13374/j.issn2095-9389.2020.05.09.001
引用本文: 趙嘉亮, 羅旭東, 陳俊紅, 謝志鵬. 納米技術在鎂質耐火材料中應用的研究進展[J]. 工程科學學報, 2021, 43(1): 76-84. doi: 10.13374/j.issn2095-9389.2020.05.09.001
ZHAO Jia-liang, LUO Xu-dong, CHEN Jun-hong, XIE Zhi-peng. Progress in the application of nanotechnology to magnesia refractories[J]. Chinese Journal of Engineering, 2021, 43(1): 76-84. doi: 10.13374/j.issn2095-9389.2020.05.09.001
Citation: ZHAO Jia-liang, LUO Xu-dong, CHEN Jun-hong, XIE Zhi-peng. Progress in the application of nanotechnology to magnesia refractories[J]. Chinese Journal of Engineering, 2021, 43(1): 76-84. doi: 10.13374/j.issn2095-9389.2020.05.09.001

納米技術在鎂質耐火材料中應用的研究進展

doi: 10.13374/j.issn2095-9389.2020.05.09.001
基金項目: 國家自然科學基金資助項目(51772139);菱鎂礦特色資源高效利用制備高性能耐火材料相關基礎研究(U1908227)
詳細信息
    通訊作者:

    E-mail:luoxudongs@aliyun.com

  • 中圖分類號: TQ175.7

Progress in the application of nanotechnology to magnesia refractories

More Information
  • 摘要: 利用納米技術制備復相鎂質耐火材料,不僅可以緩解高溫工業對高性能鎂質材料的需求,而且又能實現鎂質耐火材料的輕質化和多功能化,進而達到提高產品附加值的目的。因此,利用納米技術制備復相鎂質耐火材料具有較高的研究意義。從鎂質耐火材料損毀機制的角度,綜述了近年來國內外納米技術在低碳鎂碳質、鎂鈣質、鎂鋁質耐火材料中的研究現狀和進展,并且分析了納米技術在鎂質耐火材料中的作用機理,最后指出了納米技術在鎂質耐火材料中應用所面臨的挑戰和發展方向。

     

  • 圖  1  低碳鎂碳耐火材料的抗渣性。(a)抗侵蝕后試樣的橫截面;(b)抗侵蝕后試樣的滲透深度[11]

    Figure  1.  Slag resistance of low-carbon MgO–C refractories: (a) cross sections of the specimens after corrosion; (b) penetration depths of the specimens after corrosion[11]

    圖  2  經1400 ℃炭化處理后基質試樣的SEM照片。(a),(b)CNTs;(c),(d)CB[12]

    Figure  2.  SEM micrographs of fracture surfaces of MgO–C compositions coked at 1400 ℃: (a) and (b) CNTs; (c) and (d) CB[12]

    圖  3  在1000 ℃下保溫3 h,催化劑的產物SEM照片。(a),(b)添加Fe(質量分數為1%);(c),(d)添加Co(質量分數為1%)[13]

    Figure  3.  SEM images of final products obtained after 3 h at 1000 ℃ using different catalysts: (a) and (b) mass fraction of Fe is 1%; (c) and (d) mass fraction of Co is 1%[13]

    圖  4  MC3試樣在不同溫度下的FESEM照片。(a)1000 ℃;(b)1200 ℃;(c)1400 ℃[14]

    Figure  4.  FESEM images of MC3 samples coked at: (a) 1000 ℃; (b) 1200 ℃; (c) 1400 ℃[14]

    圖  5  反應機理示意圖。(a)碳納米管表面形成Al4C3涂層;(b)通過氣–液–固機制形成MgAl2O4晶須;(c)通過氣–液–固機制形成MgO晶須[14]

    Figure  5.  Schematics of reaction mechanisms: (a) Al4C3 coating on the CNTs; (b) MgAl2O4 whiskers by the V-L-S mechanism; (c) MgO whiskers by the V-L-S mechanism[14]

    圖  6  在基質中裂紋擴展示意圖[16]

    Figure  6.  Schematic of crack propagation in the matrix[16]

    圖  7  試樣強度和增韌模型。(a)未摻雜Fe;(b)摻雜Fe[18]

    Figure  7.  Models of strength and toughness improvements in specimens: (a) undoped Fe; (b) doped Fe[18]

    圖  8  試樣SEM的照片。(a)nano-MA(質量分數為2%);(b)nano-MA(質量分數為4%);(c)nano-MA(質量分數為6%);(d)nano-MA(質量分數為8%)[22]

    Figure  8.  SEM images of samples containing (a) mass fraction of nano-MA is 2%; (b) mass fraction of nano-MA is 4%; (c) mass fraction of nano-MA is 6%; (d) mass fraction of nano-MA is 8%[22]

    圖  9  MgO?Al2O3二元相圖[26]

    Figure  9.  Binary phase diagram of MgO–Al2O3[26]

    圖  10  在氧化鎂骨料中原位形成納米MA過程[32]

    Figure  10.  Schematic of the in-situ formation of nano-sized MA in magnesia aggregates[32]

    圖  11  裂紋擴展機理[32]

    Figure  11.  Schematic of the mechanism of crack propagation[32]

    久色视频
  • [1] Norhasri M S M, Hamidah M S, Fadzil A M. Applications of using nano material in concrete: a review. Constr Build Mater, 2017, 133:91
    [2] Dai Y J, Li Y W, Xu X F, et al. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test. J Eur Ceram Soc, 2019, 39(16): 5433 doi: 10.1016/j.jeurceramsoc.2019.07.026
    [3] Wang E H, Chen J H, Hou X M. Design, preparation, and application of new function refractories. Chin J Eng, 2019, 41(12): 1520

    王恩會, 陳俊紅, 侯新梅. 功能化新型耐火材料的設計、制備及應用. 工程科學學報, 2019, 41(12):1520
    [4] Dai Y J, Li Y W, Jin S L, et al. Mechanical and fracture investigation of magnesia refractories with acoustic emission-based method. J Eur Ceram Soc, 2020, 40(1): 181 doi: 10.1016/j.jeurceramsoc.2019.09.010
    [5] Roy J, Chandra S, Maitra S. Nanotechnology in castable refractory. Ceram Int, 2019, 45(1): 19 doi: 10.1016/j.ceramint.2018.09.261
    [6] Yao H B, Yao S Z, Luo C, et al. Current research and developing trend of MgO–C bricks. Chin J Eng, 2018, 40(3): 253

    姚華柏, 姚蘇哲, 駱昶, 等. 鎂碳磚的研究現狀與發展趨勢. 工程科學學報, 2018, 40(3):253
    [7] Bag M, Adak S, Sarkar R. Study on low carbon containing MgO–C refractory: use of nano carbon. Ceram Int, 2012, 38(3): 2339 doi: 10.1016/j.ceramint.2011.10.086
    [8] Luz A P, Souza T M, Pagliosa C, et al. In situ hot elastic modulus evolution of MgO–C refractories containing Al, Si or Al–Mg antioxidants. Ceram Int, 2016, 42(8): 9836 doi: 10.1016/j.ceramint.2016.03.080
    [9] Xiao J L, Chen J F, Wei Y W, et al. Oxidation behaviors of MgO–C refractories with different Si/SiC ratio in the 1100–1500 ℃ range. Ceram Int, 2019, 45(17): 21099 doi: 10.1016/j.ceramint.2019.07.086
    [10] Bag M, Adak S, Sarkar R. Nano carbon containing MgO–C refractory: effect of graphite content. Ceram Int, 2012, 38(6): 4909 doi: 10.1016/j.ceramint.2012.02.082
    [11] Ding D H, Chong X C, Xiao G Q, et al. Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO–C refractories. Ceram Int, 2019, 45(13): 16433 doi: 10.1016/j.ceramint.2019.05.174
    [12] Zhu T B, Li Y W, Sang S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO–C refractories. Ceram Int, 2014, 40(3): 4333 doi: 10.1016/j.ceramint.2013.08.101
    [13] Wang J K. In-situ Catalytic Preparation Mechanism of Carbon Nanotube/SiC and Their Application in MgO –C Refractory[Dissertation]. Wuhan: Wuhan University of Science and Technology, 2018

    王軍凱. 碳納米管/碳化硅原位催化制備、機理及其在MgO–C耐火材料中的應用[學位論文]. 武漢: 武漢科技大學, 2018
    [14] Rastegar H, Bavand-vandchali M, Nemati A, et al. Phase and microstructural evolution of low carbon MgO–C refractories with addition of Fe-catalyzed phenolic resin. Ceram Int, 2019, 45(3): 3390 doi: 10.1016/j.ceramint.2018.10.253
    [15] Liu Z Y, Yuan L, Yu J K. Improvements in the mechanical properties and oxidation resistance of MgO–C refractories with the addition of nano-Y2O3 powder. Adv Appl Ceram, 2019, 118(5): 249 doi: 10.1080/17436753.2018.1564414
    [16] Ding D H, Lv L H, Xiao G Q, et al. Improved properties of low-carbon MgO–C refractories with the addition of multilayer graphene/MgAl2O4 composite powders. Int J Appl Ceram Technol, 2020, 17(2): 645 doi: 10.1111/ijac.13347
    [17] Zhu T B, Li Y W, Sang S B, et al. Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO–C pellets. Mater Des, 2017, 124: 16 doi: 10.1016/j.matdes.2017.03.054
    [18] Wei G P, Zhu B Q, Li X C, et al. Microstructure and mechanical properties of low-carbon MgO–C refractories bonded by an Fe nanosheet-modified phenol resin. Ceram Int, 2015, 41(1): 1553 doi: 10.1016/j.ceramint.2014.09.091
    [19] Yeprem H A. Effect of iron oxide addition on the hydration resistance and bulk density of doloma. J Eur Ceram Soc, 2007, 27(2-3): 1651 doi: 10.1016/j.jeurceramsoc.2006.05.010
    [20] Ghosh A, Tripathi H S. Sintering behaviour and hydration resistance of reactive dolomite. Ceram Int, 2012, 38(2): 1315 doi: 10.1016/j.ceramint.2011.09.005
    [21] Lee J K, Choi H S, Lee S J. Effect of Fe2O3 additions on the hydration resistance of CaO. J Ceram Process Res, 2012, 13(5): 646
    [22] Shahraki A, Ghasemi-Kahrizsangi S, Nemati A. Performance improvement of MgO–CaO refractories by the addition of nano-sized Al2O3. Mater Chem Phys, 2017, 198: 354 doi: 10.1016/j.matchemphys.2017.06.026
    [23] Dehsheish H G, Karamian E, Owsalou R G, et al. Improvement in performance of MgO–CaO refractory composites by addition of Iron (III) oxide nanoparticles. Ceram Int, 2018, 44(13): 15880 doi: 10.1016/j.ceramint.2018.06.003
    [24] Ghasemi-Kahrizsangi S, Sedeh M B, Dehsheikh H G, et al. Densification and properties of ZrO2 nanoparticles added magnesia–doloma refractories. Ceram Int, 2016, 42(14): 15658 doi: 10.1016/j.ceramint.2016.07.021
    [25] Ghasemi-Kahrizsangi S, Dehsheikh H G, Karamian E, et al. Effect of MgAl2O4 nanoparticles addition on the densification and properties of MgO–CaO refractories. Ceram Int, 2017, 43(6): 5014 doi: 10.1016/j.ceramint.2017.01.011
    [26] Mao H H, Selleby M, Sundman B. A re-evaluation of the liquid phases in the CaO–Al2O3 and MgO–Al2O3 systems. Calphad, 2004, 28(3): 307 doi: 10.1016/j.calphad.2004.09.001
    [27] Beketov I V, Medvedev A I, Samatov O M, et al. Synthesis and luminescent properties of MgAl2O4:Eu nanopowders. J Alloys Compd, 2014, 586(Suppl 1): S472
    [28] Yang L, Meng Q, Lu N, et al. Combustion synthesis and spark plasma sintering of MgAl2O4-graphene composites. Ceram Int, 2019, 45(6): 7635 doi: 10.1016/j.ceramint.2019.01.060
    [29] Tong S H, Zhao J Z, Zhang Y C, et al. Corrosion mechanism of Al–MgO–MgAl2O4 refractories in RH refining furnace during production of rail steel. Ceram Int, 2020, 46(8): 10089 doi: 10.1016/j.ceramint.2019.12.277
    [30] Hashimoto S, Honda S, Hiramatsu T, et al. Fabrication of porous spinel (MgAl2O4) from porous alumina using a template method. Ceram Int, 2013, 39(2): 2077 doi: 10.1016/j.ceramint.2012.08.062
    [31] Aksel C, Rand B, Riley F L, et al. Thermal shock behaviour of magnesia–spinel composites. J Eur Ceram Soc, 2004, 24(9): 2839 doi: 10.1016/j.jeurceramsoc.2003.07.017
    [32] Gu Q, Zhao F, Liu X H, et al. Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates. Ceram Int, 2019, 45(9): 12093 doi: 10.1016/j.ceramint.2019.03.107
    [33] Sako E Y, Braulio M A L, Pandolfelli V C. How effective is the addition of nanoscaled particles to alumina–magnesia refractory castables? Ceram Int, 2012, 38(6): 5157 doi: 10.1016/j.ceramint.2012.03.021
    [34] Aksel C, Warren P D, Riley F L. Fracture behaviour of magnesia and magnesia–spinel composites before and after thermal shock. J Eur Ceram Soc, 2004, 24(8): 2407 doi: 10.1016/j.jeurceramsoc.2003.07.005
    [35] Shafiee H, Salehirad A, Samimi A. Effect of synthesis method on structural and physical properties of MgO/MgAl2O4 nanocomposite as a refractory ceramic. Appl Phys A, 2020, 126(3): 198 doi: 10.1007/s00339-020-3369-z
  • 加載中
圖(11)
計量
  • 文章訪問數:  6708
  • HTML全文瀏覽量:  900
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-09
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回