<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

氧化石墨烯摻雜量與pH值對石墨烯氣凝膠儲能性能的影響

郭志成 辛青 臧月 林君

郭志成, 辛青, 臧月, 林君. 氧化石墨烯摻雜量與pH值對石墨烯氣凝膠儲能性能的影響[J]. 工程科學學報, 2021, 43(2): 239-247. doi: 10.13374/j.issn2095-9389.2020.01.07.001
引用本文: 郭志成, 辛青, 臧月, 林君. 氧化石墨烯摻雜量與pH值對石墨烯氣凝膠儲能性能的影響[J]. 工程科學學報, 2021, 43(2): 239-247. doi: 10.13374/j.issn2095-9389.2020.01.07.001
GUO Zhi-cheng, XIN Qing, ZANG Yue, LIN Jun. Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel[J]. Chinese Journal of Engineering, 2021, 43(2): 239-247. doi: 10.13374/j.issn2095-9389.2020.01.07.001
Citation: GUO Zhi-cheng, XIN Qing, ZANG Yue, LIN Jun. Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel[J]. Chinese Journal of Engineering, 2021, 43(2): 239-247. doi: 10.13374/j.issn2095-9389.2020.01.07.001

氧化石墨烯摻雜量與pH值對石墨烯氣凝膠儲能性能的影響

doi: 10.13374/j.issn2095-9389.2020.01.07.001
基金項目: 浙江省自然科學基金資助項目(LY17B060012,LQ17F050002);浙江省裝備電子研究重點實驗室資助項目(2019E10009)
詳細信息
    通訊作者:

    E-mail: xinqing@hdu.edu.cn

  • 中圖分類號: TB34

Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel

More Information
  • 摘要: 采用溶膠凝膠法制備石墨烯氣凝膠(GA),并研究了前驅液中的pH值與氧化石墨烯(GO)的質量分數對GA材料儲能性能的影響。使用X射線粉末衍射(XRD)、X射線光電子能譜(XPS)、氮氣吸脫附分析、掃描電子顯微鏡(SEM)對樣品微觀結構與形貌進行表征。用循環伏安(CV)、恒流充放電(CP)、電化學交流阻抗(EIS)測試了樣品的電化學性能。結果表明,前驅液中的pH值及GO質量分數的不同會影響GA中團簇顆粒的大小和數量,進一步影響GA三維結構。在pH值為6.3、GO 的質量分數為1%時,制得的GA比表面積最大為530 m2?g?1,在1 A?g?1的電流密度下比電容高達364 F?g?1。此外,將該材料制成對稱超級電容器具有高的庫倫效率,在1 A?g?1下進行CP測試,得到電容器的比電容為98 F?g?1,循環800次后其循環穩定性能為初始比電容值的95.9%。

     

  • 圖  1  樣品的N2吸附–脫附等溫線

    Figure  1.  N2 adsorption–desorption isotherms of samples

    圖  2  樣品的SEM圖。(a) GA–1–4;(b) GA–0–6.3;(c) GA–0.4–6.3;(d) GA–1–6.3;(e) GA–1–8

    Figure  2.  SEM images of samples:(a) GA–1–4; (b) GA–0–6.3; (c) GA–0.4–6.3; (d) GA–1–6.3; (e) GA–1–8

    圖  3  樣品GA–1–6.3的XRD圖

    Figure  3.  XRD pattern of GA–1–6.3

    圖  4  GA的XPS圖。(a)樣品GA–1–6.3的XPS圖譜;(b)樣品GA–1–6.3的高分辨率C 1s XPS圖譜

    Figure  4.  XPS spectra of GA:(a) XPS spectra of GA–1–6.3; (b) high-resolution spectra of C 1s of GA–1–6.3

    圖  5  GA制備過程圖。(a)前驅混合液照片;(b)水凝膠照片;(c)高溫炭化后照片

    Figure  5.  Preparation process photos of GA: (a) precursor mixture; (b) hydrogel; (c) hydrogel after carbonization at high temperature

    圖  6  GA的CV曲線圖。(a),(b) 5 mV?s?1掃描速率下樣品的CV曲線圖;(c)不同掃描速率下樣品GA–1–6.3的CV曲線圖

    Figure  6.  CV curves of GA: (a), (b) CV curves of sample at scanning rate of 5 mV?s?1; (c) CV curves of GA–1–6.3 at different scanning rates

    圖  7  GA的CP曲線圖。(a),(b) 1 A?g?1電流密度下五組樣品的CP曲線圖;(c)樣品GA–1–6.3在1 A?g?1電流密度下的循環壽命曲線圖(插圖為不同電流密度下樣品GA–1–6.3的CP曲線圖)

    Figure  7.  CP curves of GA: (a), (b) CP curves of sample at 1 A?g?1 current density; (c) cycle life curve of GA–1–6.3 at a current density of 1 A?g?1 (inset: CP curves of GA–1–6.3 at different current densities)

    圖  8  GA的EIS圖及其等效電路圖。(a)(b)樣品的EIS曲線圖;(c)電化學阻抗譜的等效電路

    Figure  8.  Nyquist plots and equivalent circuit of GA: (a), (b) Nyquist plots of samples; (c) the equivalent circuit for the electrochemical impedance spectra

    圖  9  超級電容器的CP圖以及其Ragone圖。(a)不同電流密度下超級電容器的CP曲線圖;(b)在1 A?g?1電流密度下超級電容器的循環壽命曲線圖(插圖為超級電容器在1 A?g?1電流密度下第1次、第500次、第800次的CP曲線圖);(c)能量密度與功率密度的曲線

    Figure  9.  CP curves and Ragone plot of the supercapacitors: (a) CP curves of the supercapacitors at different current densities; (b) cycle life curves of the supercapacitors at a current density of 1 A?g?1 (inset: CP curves of the first, 500th, and 800th cycles of the super capacitors at 1 A?g?1 current density); (c) curve of energy density vs power density

    表  1  五組樣品的比表面積

    Table  1.   Specific surface areas of the samples

    SampleMass fraction of GO/%pHBET/(m2?g?1)
    GA–1–414231
    GA–0–6.306.3115
    GA–0.4–6.30.46.3370
    GA–1–6.316.3530
    GA–1–818203
    下載: 導出CSV
    久色视频
  • [1] Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci, 1989, 24(9): 3221 doi: 10.1007/BF01139044
    [2] Liu N, Zhang S T, Fu R W, et al. Carbon aerogel spheres prepared via alcohol supercritical drying. Carbon, 2006, 44(12): 2430 doi: 10.1016/j.carbon.2006.04.032
    [3] Xie T P, Zhang L, Wang Y, et al. Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceram Int, 2019, 45(2): 2516 doi: 10.1016/j.ceramint.2018.10.181
    [4] Chandrasekaran S, Campbell P G, Baumann T F, et al. Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels. J Mater Res, 2017, 32(22): 4166 doi: 10.1557/jmr.2017.411
    [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
    [6] Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120

    劉盼盼, 劉斯奇, 高鴻毅, 等. 羥基磷灰石氣凝膠復合相變材料的制備及其性能. 工程科學學報, 2020, 42(1):120
    [7] Wang Y X, Myers M, Staser J A. Electrochemical UV sensor using carbon quantum dot/graphene semiconductor. J Electrochem Soc, 2018, 165(4): H3001 doi: 10.1149/2.0011804jes
    [8] Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al–15Si–4Cu–Mg matrix composites. Chin J Eng, 2019, 41(9): 1162

    水麗, 張凱, 于宏. 石墨烯含量對石墨烯/Al–15Si–4Cu–Mg復合材料微觀組織和力學性能的影響. 工程科學學報, 2019, 41(9):1162
    [9] Méndez-Morales T, Ganfoud N, Li Z J, et al. Performance of microporous carbon electrodes for supercapacitors: comparing graphene with disordered materials. Energy Storage Mater, 2019, 17: 88 doi: 10.1016/j.ensm.2018.11.022
    [10] Fu R R, Luo M, Ma Y H, et al. Preparation and supercapacitance of Ni3(HCOO)6/reduced graphene oxide electrode materials. Chem J Chin Univ, 2016, 37(8): 1485 doi: 10.7503/cjcu20160234

    付蓉蓉, 羅民, 馬永華, 等. Ni3(HCOO)6/還原氧化石墨烯復合電極材料的制備及電容性能. 高等學校化學學報, 2016, 37(8):1485 doi: 10.7503/cjcu20160234
    [11] Zou Z H, Zhou W J, Zhang Y H, et al. High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film. Chem Eng J, 2019, 357: 45 doi: 10.1016/j.cej.2018.09.143
    [12] Wu X F, Zhang J, Zhuang Y F, et al. Template-free preparation of a few-layer graphene nanomesh via a one-step hydrothermal process. J Mater Sci, 2015, 50(3): 1317 doi: 10.1007/s10853-014-8691-4
    [13] Zhang J J, Zhao X L, Li M X, et al. High-quality and low-cost three-dimensional graphene from graphite flakes via carbocation-induced interlayer oxygen release. Nanoscale, 2018, 10(37): 17638 doi: 10.1039/C8NR04557G
    [14] Gao X. Fabrication and Electrochemical Properties of the Graphene Based Composites as Supercapacitor Electrode Materials [Dissertation]. Harbin: Harbin University of Science and Technology, 2019

    高鑫. 石墨烯基超級電容器電極材料的制備及電化學性能[學位論文]. 哈爾濱: 哈爾濱理工大學, 2019
    [15] Xu X, Zhang Q Q, Yu Y K, et al. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv Mater, 2016, 28(41): 9223 doi: 10.1002/adma.201603079
    [16] González M, Baselga J, Pozuelo J. Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon, 2019, 147: 27 doi: 10.1016/j.carbon.2019.02.068
    [17] Xue Q, Ding Y, Xue Y Y, et al. 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon, 2018, 139: 137 doi: 10.1016/j.carbon.2018.06.052
    [18] Chu H, Zhang F F, Pei L Y, et al. Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. J Alloys Compd, 2018, 767: 583 doi: 10.1016/j.jallcom.2018.07.126
    [19] Ates M, Caliskan S, Ozten E. Preparation of rGO/Ag/PEDOT nanocomposites for supercapacitors. Mater Technol, 2018, 33(14): 872 doi: 10.1080/10667857.2018.1521087
    [20] Yang Y, Xi Y L, Li J Z, et al. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res Lett, 2017, 12: 394 doi: 10.1186/s11671-017-2159-9
    [21] Liu L, Tian G Y, Ma R, et al. Preparation and electrosorption performance of graphene Xerogel. ECS Solid State Lett, 2015, 4(6): M9 doi: 10.1149/2.0011506ssl
    [22] Nagy B, Bakos I, Bertoti I, et al. Synergism of nitrogen and reduced graphene in the electrocatalytic behavior of resorcinol - Formaldehyde based carbon aerogels. Carbon, 2018, 139: 872 doi: 10.1016/j.carbon.2018.07.061
    [23] Rey-Raap N, Arenillas A, Menendez J A. A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous Mesoporous Mater, 2016, 223: 89 doi: 10.1016/j.micromeso.2015.10.044
    [24] Garcia-Bordeje E, Victor-Roman S, Sanahuja-Parejo O, et al. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. Nanoscale, 2018, 10(7): 3526 doi: 10.1039/C7NR08732B
    [25] Horikaw T, Hayashi J, Muroyama K. Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon, 2004, 42(8-9): 1625 doi: 10.1016/j.carbon.2004.02.016
    [26] Feng Y N, Wang J, Ge L, et al. Pore size controllable preparation for low density porous nano-carbon. J Nanosci Nanotechnol, 2013, 13(10): 7012 doi: 10.1166/jnn.2013.8063
    [27] Rey-Raap N, Menendez J A, Arenillas A. Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon, 2014, 78: 490 doi: 10.1016/j.carbon.2014.07.030
    [28] Elkhatat A M, Al-Muhtaseb S A. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater, 2011, 23(26): 2887 doi: 10.1002/adma.201100283
    [29] Gallegos-Suarez E, Perez-Cadenas A F, Maldonado-Hodar F J, et al. On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem Eng J, 2012, 181-182: 851 doi: 10.1016/j.cej.2011.12.002
    [30] Al-Muhtaseb S A, Ritter J A. Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater, 2003, 15(2): 101 doi: 10.1002/adma.200390020
    [31] Matos I, Fernandes S, Guerreiro L, et al. The effect of surfactants on the porosity of carbon xerogels. Microporous Mesoporous Mater, 2006, 92(1-3): 38 doi: 10.1016/j.micromeso.2005.12.011
    [32] Rey-Raap N, Menendez J A, Arenillas A. RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater, 2014, 195: 266 doi: 10.1016/j.micromeso.2014.04.048
    [33] Xia X H, Zhang X F, Yi S Q, et al. Preparation of high specific surface area composite carbon cryogels from self-assembly of graphene oxide and resorcinol monomers for supercapacitors. J Solid State Electrochem, 2016, 20(6): 1793 doi: 10.1007/s10008-016-3196-5
    [34] Wu Z S, Ren W C, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 2010, 4(10): 5835 doi: 10.1021/nn101754k
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  7361
  • HTML全文瀏覽量:  1200
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-07
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回