<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

人工智能在軍事對抗中的應用進展

張智敏 石飛飛 萬月亮 徐陽 張帆 寧煥生

張智敏, 石飛飛, 萬月亮, 徐陽, 張帆, 寧煥生. 人工智能在軍事對抗中的應用進展[J]. 工程科學學報, 2020, 42(9): 1106-1118. doi: 10.13374/j.issn2095-9389.2019.11.19.001
引用本文: 張智敏, 石飛飛, 萬月亮, 徐陽, 張帆, 寧煥生. 人工智能在軍事對抗中的應用進展[J]. 工程科學學報, 2020, 42(9): 1106-1118. doi: 10.13374/j.issn2095-9389.2019.11.19.001
ZHANG Zhi-min, SHI Fei-fei, WAN Yue-liang, XU Yang, ZHANG Fan, NING Huan-sheng. Application progress of artificial intelligence in military confrontation[J]. Chinese Journal of Engineering, 2020, 42(9): 1106-1118. doi: 10.13374/j.issn2095-9389.2019.11.19.001
Citation: ZHANG Zhi-min, SHI Fei-fei, WAN Yue-liang, XU Yang, ZHANG Fan, NING Huan-sheng. Application progress of artificial intelligence in military confrontation[J]. Chinese Journal of Engineering, 2020, 42(9): 1106-1118. doi: 10.13374/j.issn2095-9389.2019.11.19.001

人工智能在軍事對抗中的應用進展

doi: 10.13374/j.issn2095-9389.2019.11.19.001
基金項目: 國家自然科學基金資助項目(61872038);國家自然科學基金民航聯合基金資助項目(U1633121);北京科技大學順德研究生院科技創新專項資金資助項目(BK19CF010)
詳細信息
    通訊作者:

    E-mail:ninghuansheng@ustb.edu.cn

  • 中圖分類號: TG142.71

Application progress of artificial intelligence in military confrontation

More Information
  • 摘要: 人工智能特別是近幾年深度學習的飛速發展,深刻的影響著軍事領域,并賦予現代戰爭智能性、交叉性和破壞性的新特點。要想在軍事對抗中取勝,不僅需要機器智能,同樣需要人類智慧,能在軍事作戰中達到人機高度協同,是實現人與機器取長補短的重要途徑,也是在愈發復雜的戰爭形勢中取得勝利的關鍵。本文將軍事對抗中人工智能的應用作為切入點,羅列了代表性國家在軍事領域對人工智能的重視程度,從對抗策略和物聯網三層架構兩大角度對發展現狀進行總結,同時指出在目前軍事領域使用人工智能存在的不足,對人機融合智能在軍事對抗中的發展趨勢進行分析,并給出可能實現的技術方案,對未來的研究方向作出展望。如何實現高度的人機融合,從而獲得“1+1>2”的良好效果,是人工智能在軍事對抗中的下一步研究工作。

     

  • 圖  1  人在回路決策系統中的人機融合智能

    Figure  1.  Hybrid human–artificial intelligence in loop decision system

    圖  2  數據高速處理中的人機融合智能

    Figure  2.  Hybrid human–artificial intelligence in high-speed data processing

    圖  3  人機負載動態分配系統

    Figure  3.  Dynamic distribution system based on hybrid human-artificial intelligence

    表  1  智能防御方面典型方法總結

    Table  1.   Summary of typical methods in intelligent defense

    Research angle of intelligent defenseMethod/structureMain technologyCitation number
    Data anti-interferencePixelDP DNNAdding noise layer to the original DNN;
    introducing cryptography differential privacy
    [5]
    Defense distillation modelRedesign of the DNN; new architecture based on defensive distillation;
    flexible setting of distillation temperature
    [6]
    ADV-BNNModeling randomness in Bayesian neural network;
    constructing minimax problem
    [7]
    Intelligent cooperative formationLeader-follower strategy formationLeader-follower strategy[9]
    Arbitrary switching of multi-agent formationMulti-agent formation control chart[10-11]
    Multi-robot formation and formation switchingOmnidirectional vision[12]
    Immune multi-agent networkCombining biological immune system mechanisms with multi-agent approaches[13]
    Switching formation and topology in cooperative multi-agent source seekingGradient estimation[14]
    Distributed cooperative control for UAVDistributed cooperative control protocol and implementation of error system[15]
    Intelligent avoidanceThe definition and framework of UAV perception and avoidanceLayered perception and avoidance process[16]
    Vision-based UAV perception and avoidance systemTarget detection combining image threshold method and frame difference method and based on the artificial potential field method to avoid target[17]
    UAV perception and avoidance based on multi-source information fusionMulti-sensor information fusion technology; multi-modal image technology[18]
    下載: 導出CSV

    表  2  智能檢測方面典型方法總結

    Table  2.   Summary of typical methods in intelligent detection

    Research angle of
    intelligent detection
    Method/structureMain technologyCitation number
    Risk assessmentThreat assessment based on the preferred
    value of threat degree
    Fuzzy optimization theory[19]
    Information security risk assessment modelKnowledge and fuzzy logic[20]
    Risk assessment model of information transmission securityCombination of genetic algorithm and
    neural network technology
    [21]
    Environmental perceptionEnvironment-sensing radarInterdisciplinary fusion of microwave remote sensing technology and AI technology[22]
    Integration of AI and radar technologyCognitive recognition[23]
    下載: 導出CSV

    表  3  智能攻擊方面典型方法總結

    Table  3.   Summary of typical methods in intelligent attack

    Research angle of intelligent attackMethod/structureMain technologyCitation number
    Attack behavior modelingCooperative combat system action planning method based on multi-agent systemAgent abstraction; using the MAS theory in decision process and planning strategy of master-slave overlapping structure[24]
    Application of multi-agent system
    in combat simulation
    Fusion of multi-agent system and complex adaptive system[25]
    Fast data transfer and on-demand shared distributionIntelligent database systemIntegration of database technology and AI[27]
    Construction of military information center based on data processingData mining, data fusion, and other AI technologies[28]
    Multi-sensor information fusionData-level fusion, feature-level fusion, and decision-level fusion[29]
    Situational awarenessSituation awareness based on radar
    network in cyberspace
    Design of radar network based on situation awareness
    framework in cyberspace war
    [30]
    Attention mechanism of battlefield
    situation awareness
    Introduced attention mechanism into situation
    awareness decision and action
    [31]
    下載: 導出CSV

    表  4  感知層安全典型技術總結

    Table  4.   Summary of typical technologies of perceptual layer security

    Research angle of perceptual levelMethod/structureMain technologyCitation number
    Sensor securityInternet of Things authentication
    and key management
    Symmetric encryption mechanism based on Hash[33]
    Public key authentication scheme
    for sensor networks
    One-way Hash function used in public key authentication,
    and Merkle tree established with public key
    [34]
    Sensor network securityDiDrip protocolDistributed design and using different security
    parameters to improve security
    [35]
    Cross-layer intrusion detection in wireless sensor network using mobile agentFusing cross-layer features such as the MAC layer and network layer[36]
    Access control of wireless sensor network
    based on information coverage
    Design of a THC algorithm; introducing the Merkle
    Hash tree and one-way chain
    [37]
    Access control of wireless sensor networks
    with strong anonymity
    Integrating Hash function, message verification
    code and other technologies
    [38]
    Data and key privacy protection in data aggregation of wireless sensor networksOrganizing nodes in sensor network into tree structure and
    encryption in homomorphism
    [40]
    Application of chaotic sequence cipher in wireless sensor networkImproved chaotic sequence cipher[41]
    Multi-sensor data fusionMulti-sensor information fusion predictorBased on ARMA information model and augmented state space
    model combined with two kinds of variance formulas
    [42]
    Fuzzy method of multi-sensor data fusionFeature extraction and fusion based on fuzzy method
    and membership function
    [44]
    Super dimensional data fusion
    in hyperspectral sensor
    Feature and decision fusion by maximum rule, neural
    network and other technologies
    [45]
    下載: 導出CSV

    表  5  網絡漏洞評估與安全態勢感知典型技術總結

    Table  5.   Summary of typical technologies of network vulnerability assessment and security situation awareness

    Network vulnerability assessment and security situation awarenessMethod/structureCitation number
    Multi-agent network security modelUsing a two-tier multi-agent framework to integrate AI to monitor resources and attacks[47]
    Prediction of network security situation based on RBF neural networkBased on an RBFNN neural network and the integration of the cuckoo search algorithm, simulated annealing algorithm, and dynamic discovery probability mechanism in the neural network[48]
    Time series prediction of network situation awarenessPrediction method with support vector regression[49]
    下載: 導出CSV

    表  6  人工智能缺點及衍生在軍事對抗中的問題

    Table  6.   Shortcomings of AI and the associated problems in military confrontation

    Defects of AIPossible problems in military confrontation
    Unable to implement complex reasoningIn the face of a complex battlefield environment, reasoning is likely to go beyond the scope of
    AI understanding, resulting in “thinking” stagnation.
    Support from a large number of samplesIn the battlefield environment, data collection and processing speed may not meet the needs of AI,
    and the good self-learning ability of AI cannot be reflected.
    Essentially a software programThere may be defects in program design; errors may occur in high-intensity use,
    or the program may be attacked and interfered by enemies.
    High requirements for computing powerIn the battlefield environment, the batteries of equipment are limited and the power supply is tight, but AI usually requires large power consumption for modeling and training.
    No social history [51]Machines cannot think on their own. They can only be used to replace part of human thinking activities. They have no purpose or feelings. In the battlefield environment, they will not accurately judge a new situation.
    下載: 導出CSV
    久色视频
  • [1] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Comput, 2006, 18(7): 1527 doi: 10.1162/neco.2006.18.7.1527
    [2] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature, 2017, 550(7676): 354 doi: 10.1038/nature24270
    [3] Xiao Z Z, Liu Y M. Intelligent Weapons and Unmanned War. Beijing: Military Friendship Press, 2001

    肖占中, 劉昱旻. 智能武器與無人戰爭. 北京: 軍事誼文出版社, 2001
    [4] Wang X C. Artificial intelligence algorithm: the invisible hand of rewriting war. Military Digest, 2017(21): 19

    王雪誠. 人工智能算法: 改寫戰爭的無形之手. 軍事文摘, 2017(21):19
    [5] Lecuyer M, Atlidakis V, Geambasu R, et al. Certified robustness to adversarial examples with differential privacy // 2019 IEEE Symposium on Security and Privacy (SP). San Francisco, 2019
    [6] Papernot N, McDaniel P, Wu X, et al. Distillation as a defense to adversarial perturbations against deep neural networks//2016 IEEE Symposium on Security and Privacy (SP). San Jose, 2016
    [7] Liu X Q, Li Y, Wu C R, et al. Adv-BNN: improved adversarial defense through robust bayesian neural network // International Conference on Learning Representations. New Orleans, 2019
    [8] Shi Z Z. Intelligent Agent and Its Application. Beijing: Science Press, 2002

    史忠植. 智能主體及其應用. 北京: 科學出版社, 2002
    [9] Desai J P, Ostrowski J, Kumar V. Controlling formations of multiple mobile robots//1998 IEEE International Conference on Robotics and Automation. Belgium, 1998: 2864
    [10] Desai J P, Ostrowski J P, Kumar V. Modeling and control of formations of nonholonomic mobile robots. IEEE Trans Robot Autom, 2001, 17(6): 905 doi: 10.1109/70.976023
    [11] Desai J P. A graph theoretic approach for modeling mobile robot team formations. J Robot Syst, 2002, 19(11): 511 doi: 10.1002/rob.10057
    [12] Das A K, Fierro R, Kumar V, et al. A vision-based formation control framework. IEEE Trans Robot Autom, 2002, 18(5): 813 doi: 10.1109/TRA.2002.803463
    [13] Wang J, Zhao X Z, Zhang Y H, et al. Cooperative air-defense system of system model for surface warship formation based on immune multi-agent. J Syst Simul, 2012, 24(2): 263

    王軍, 趙曉哲, 張瑛涵, 等. 基于免疫多智能體的艦艇編隊協同防空體系模型. 系統仿真學報, 2012, 24(2):263
    [14] Sahal M, Agustinah T, Jazidie A. Switching formation and topology in cooperative multi-agent source seeking using gradient estimation // 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT). Yogyakarta, 2019: 151
    [15] Liu L, Liang X L, Zhu C C, et al. Distributed cooperative control for UAV swarm formation reconfiguration based on consensus theory // 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE). Shanghai, 2017: 264
    [16] Lü Y, Kang T N, Pan Q, et al. UAV sense and avoidance: concepts, technologies and systems. Sci Sin Inform, 2019, 49(5): 520 doi: 10.1360/N112018-00318

    呂洋, 康童娜, 潘泉, 等. 無人機感知與規避: 概念、技術與系統. 中國科學: 信息科學, 2019, 49(5):520 doi: 10.1360/N112018-00318
    [17] Han J Y, Wang H L, Liu C, et al. Vision-based system design for UAV target detection and avoidance. Tactical Missile Technol, 2014(5): 11

    韓靜雅, 王宏倫, 劉暢, 等. 基于視覺的無人機感知與規避系統設計. 戰術導彈技術, 2014(5):11
    [18] Li Y J, Pan Q, Yang F, et al. Research on UAV perception and avoidance based on multi-source information fusion // Proceedings of the 29th China Control Conference. Beijing, 2010: 2861

    李耀軍, 潘泉, 楊峰, 等. 基于多源信息融合的無人機感知與規避研究 // 第二十九屆中國控制會議論文集. 北京, 2010: 2861
    [19] Huang J P. Study on Threat Assessment of Surface to Air Missile Forces in Anti-Air Attack Operations[Dissertation]. Xiamen: Xiamen University, 2009

    黃劍平. 地空導彈部隊在反空襲作戰中的威脅評估研究[學位論文]. 廈門: 廈門大學, 2009
    [20] Azan Basallo Y, Estrada Senti V, Martinez Sanchez N. Artificial intelligence techniques for information security risk assessment. IEEE Latin America Trans, 2018, 16(3): 897 doi: 10.1109/TLA.2018.8358671
    [21] Du G, Han Z Q, Li N X, et al. Risk assessment model of information transmission security based on neural network and genetic algorithm. J Intell, 2010, 29(Suppl 1): 207

    杜戈, 韓增奇, 李寧霞, 等. 基于神經網絡和遺傳算法的信息傳輸安全風險度評估模型. 情報雜志, 2010, 29(增刊1): 207
    [22] Sun X Z, Liu L. Development of unmanned ground combat system and environmental sensing radar. Sci Technol Vision, 2017(8): 1 doi: 10.3969/j.issn.2095-2457.2017.08.001

    孫曉舟, 劉露. 地面無人作戰系統及環境感知雷達發展概述. 科技視界, 2017(8):1 doi: 10.3969/j.issn.2095-2457.2017.08.001
    [23] Li B, Ren H M, Xiao Z H. Limitation and development prospect of artificial intelligence in radar application. Military Digest, 2019(3): 42

    李波, 任紅梅, 肖志河. 人工智能在雷達應用中的限制和發展前景. 軍事文摘, 2019(3):42
    [24] Yang F, Wang Q, Wu Z D. Cooperative combat system action planning method based on multi-agent system // 2010 Second International Workshop on Education Technology and Computer Science. Wuhan, 2010: 490
    [25] Liu Y F, Zhang A. Multi-agent system and its application in combat simulation // 2008 International Symposium on Computational Intelligence and Design. Wuhan, 2008: 448
    [26] Brodie M L, Cui J. Future intelligent information system: the combination of AI and DB technology. Comput Sci, 1989(3): 23

    Brodie M L, 崔靖. 未來的智能信息系統: AI與DB技術的結合. 計算機科學, 1989(3):23
    [27] Nihalani N, Silakari S, Motwani M. Integration of artificial intelligence and database management system: An inventive approach for intelligent databases // 2009 First International Conference on Computational Intelligence, Communication Systems and Networks. Indore, 2009: 35
    [28] Shao J, Wu H, Chen L. Construction of military information center based on correlation techniques of data processing. Microcomput Inform, 2006, 22(3): 89 doi: 10.3969/j.issn.1008-0570.2006.03.032

    邵軍, 吳華, 陳蕾. 基于數據處理相關技術的軍事信息中心構建. 微計算機信息, 2006, 22(3):89 doi: 10.3969/j.issn.1008-0570.2006.03.032
    [29] Niu Z Y. Research on multi-sensor information fusion technology in modern war. Comput Inform Technol, 2006(3): 71

    牛志一. 現代化戰爭中的多傳感器信息融合技術研究. 計算機與信息技術, 2006(3):71
    [30] Yang X, Shan W, Jia L. Technology of situation awareness based on radar network in cyberspace //Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. Beijing, 2013: 1505
    [31] Kong Y S, Hu X F, Zhu F, et al. Attention mechanism in battlefield situation awareness. J Syst Simul, 2017, 29(10): 2233

    孔亦思, 胡曉峰, 朱豐, 等. 戰場態勢感知中的注意力機制探析. 系統仿真學報, 2017, 29(10):2233
    [32] www.cecb2b.com. Experts call for a higher level of sensor safety. Comput Telecommun, 2014, 11(11): 21 doi: 10.3969/j.issn.1008-6609.2014.11.015

    元器件交易網. 專家呼吁提升傳感器安全層級. 電腦與電信, 2014, 11(11):21 doi: 10.3969/j.issn.1008-6609.2014.11.015
    [33] Chen L. Research on Authentication Technology and Key Management in Internet of Things[Dissertation]. Changsha: Central South University, 2013

    陳雷. 物聯網中認證技術與密鑰管理的研究[學位論文]. 長沙: 中南大學, 2013
    [34] Du W L, Wang R H, Ning P. An efficient scheme for authenticating public keys in sensor networks // Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking & Computing. Urbana-Champaign IL, 2005: 58
    [35] Ghormare S, Sahare V. Implementation of data confidentiality for providing high security in Wireless Sensor Network // 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). Coimbatore, 2015: 1
    [36] Gandhimathi L, Murugaboopathi G. Cross layer intrusion detection and prevention of multiple attacks in Wireless Sensor Network using Mobile agent // 2016 International Conference on Information Communication and Embedded Systems (ICICES). Chennai, 2016: 1
    [37] Du Z Q, Shen Y L, Ma J F, et al. Two-hop cover-based access control scheme for wireless sensor networks. J Commun, 2010, 31(2): 113 doi: 10.3969/j.issn.1000-436X.2010.02.017

    杜志強, 沈玉龍, 馬建峰, 等. 基于信息覆蓋的無線傳感器網絡訪問控制機制. 通信學報, 2010, 31(2):113 doi: 10.3969/j.issn.1000-436X.2010.02.017
    [38] Chen T, Lu J Z, Jiang J H. An access control scheme with strong anonymity in wireless sensor network. Comput Eng, 2015, 41(1): 126 doi: 10.3969/j.issn.1000-3428.2015.01.023

    陳婷, 盧建朱, 江俊暉. 一種具有強匿名性的無線傳感器網絡訪問控制方案. 計算機工程, 2015, 41(1):126 doi: 10.3969/j.issn.1000-3428.2015.01.023
    [39] Jin N, Zhang D Y, Gao J Q, et al. A study on the application of symmetric ciphers and asymmetric ciphers in wireless sensor networks. Chin J Sens Actuators, 2011, 24(6): 874 doi: 10.3969/j.issn.1004-1699.2011.06.019

    金寧, 張道遠, 高建橋, 等. 對稱密碼和非對稱密碼算法在無線傳感器網絡中應用研究. 傳感技術學報, 2011, 24(6):874 doi: 10.3969/j.issn.1004-1699.2011.06.019
    [40] Akila V, Sheela T. Preserving data and key privacy in data aggregation for wireless sensor networks // 2017 2nd International Conference on Computing and Communications Technologies (ICCCT). Chennai, 2017: 282
    [41] Zhao C. Research on the Application of Chaotic Sequence Cipher in Wireless Sensor Network[Dissertation]. Beijing: Beijing University of Chemical Technology, 2014

    趙晨. 混沌序列密碼在無線傳感器網絡中的應用研究[學位論文]. 北京: 北京化工大學, 2014
    [42] Mao L, Deng Z L. Multisensor information fusion wiener deconvolution predictor //2007 26th Chinese Control Conference. Zhangjiajie, 2007: 1013

    毛琳, 鄧自立. 多傳感器信息融合Wiener反卷積預報器 // 第二十六屆中國控制會議論文集. 張家界, 2007: 1013
    [43] Li N G, Zhao H. The requirements on the data fusion of multiple-sensor of UAV. Natl Defense Sci Technol, 2015, 36(5): 52

    李念國, 趙慧. 無人機多傳感器數據融合的設計要求. 國防科技, 2015, 36(5):52
    [44] Ruzzo F, Ramponi G. Fuzzy methods for multisensor data fusion // 1993 IEEE Instrumentation and Measurement Technology Conference. Irvine, 1993: 676
    [45] Jimenez L O, Morales-Morell A, Creus A. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks. IEEE Trans Geosci Remote Sens, 1999, 37(3): 1360 doi: 10.1109/36.763300
    [46] Bass T, Gruber D. A glimpse into the future of id[J/OL]. USENIX (2001-2-1)[2019-11-19]. http://pdfs.semanticscholar.org/7ac9/8c4f3b72210775b08aa5849d5501de9c7048.pdf
    [47] Tsochev G, Trifonov R, Yoshinov R, et al. Some security model based on multi agent systems //2018 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). Prague, 2018: 32
    [48] Ren W, Jiang X H, Sun T F. RBFNN-based prediction of networks security situation. Comput Eng Appl, 2006, 42(31): 136 doi: 10.3321/j.issn:1002-8331.2006.31.041

    任偉, 蔣興浩, 孫錟鋒. 基于RBF神經網絡的網絡安全態勢預測方法. 計算機工程與應用, 2006, 42(31):136 doi: 10.3321/j.issn:1002-8331.2006.31.041
    [49] Zhang X, Hu C Z, Liu S H, et al. Research on network attack situation forecast technique based on support vector machine. Comput Eng, 2007, 33(11): 10 doi: 10.3969/j.issn.1000-3428.2007.11.004

    張翔, 胡昌振, 劉勝航, 等. 基于支持向量機的網絡攻擊態勢預測技術研究. 計算機工程, 2007, 33(11):10 doi: 10.3969/j.issn.1000-3428.2007.11.004
    [50] Ren C G. Research on Cloud Computing and Its Key Technologies for Massive Data Processing[Dissertation]. Nanjing: Nanjing University of Technology, 2013

    任崇廣. 面向海量數據處理領域的云計算及其關鍵技術研究[學位論文]. 南京: 南京理工大學, 2013
    [51] Chu Q W. On Artificial Intelligence from the Perspective of Philosophy[Dissertation]. Wuhan: Wuhan University of Technology, 2014

    褚秋雯. 從哲學的角度看人工智能[學位論文]. 武漢: 武漢理工大學, 2014
  • 加載中
圖(3) / 表(6)
計量
  • 文章訪問數:  5412
  • HTML全文瀏覽量:  2327
  • PDF下載量:  644
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-19
  • 網絡出版日期:  2022-10-14
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回