<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

歐洲固體氧化物燃料電池(SOFC)產業化現狀

劉少名 鄧占鋒 徐桂芝 李寶讓 宋鵬翔 王紹榮

劉少名, 鄧占鋒, 徐桂芝, 李寶讓, 宋鵬翔, 王紹榮. 歐洲固體氧化物燃料電池(SOFC)產業化現狀[J]. 工程科學學報, 2020, 42(3): 278-288. doi: 10.13374/j.issn2095-9389.2019.10.10.001
引用本文: 劉少名, 鄧占鋒, 徐桂芝, 李寶讓, 宋鵬翔, 王紹榮. 歐洲固體氧化物燃料電池(SOFC)產業化現狀[J]. 工程科學學報, 2020, 42(3): 278-288. doi: 10.13374/j.issn2095-9389.2019.10.10.001
LIU Shao-ming, DENG Zhan-feng, XU Gui-zhi, LI Bao-rang, SONG Peng-xiang, WANG Shao-rong. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe[J]. Chinese Journal of Engineering, 2020, 42(3): 278-288. doi: 10.13374/j.issn2095-9389.2019.10.10.001
Citation: LIU Shao-ming, DENG Zhan-feng, XU Gui-zhi, LI Bao-rang, SONG Peng-xiang, WANG Shao-rong. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe[J]. Chinese Journal of Engineering, 2020, 42(3): 278-288. doi: 10.13374/j.issn2095-9389.2019.10.10.001

歐洲固體氧化物燃料電池(SOFC)產業化現狀

doi: 10.13374/j.issn2095-9389.2019.10.10.001
基金項目: 國家電網公司科技資助項目—固體氧化物燃料電池發電系統關鍵技術研究(2017-2019-SGRIDLKJ[2017]720)
詳細信息
    通訊作者:

    E-mail:549094864@qq.com

  • 中圖分類號: TK91

Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe

More Information
  • 摘要: 固體氧化物燃料電池(SOFC)具有燃料適用范圍廣、能量轉換效率高(發電效率40%~60%,綜合能效≥80%)、全固態結構、模塊化組裝、零污染等優點,作為固定式或分布式發電可增強電網清潔供電的能力、安全性、可靠性和穩定性。SOFC具有多種不同的結構,其發電規模覆蓋幾十瓦至百兆瓦,可根據不同的應用場景選擇不同的結構,應用場景主要包括固定式發電、分布式供電、熱(冷)電聯供、交通車輛輔助動力電源等領域。國內的SOFC技術發展較晚,目前已取得一定的研究進展,并且能夠自主研發出十幾千瓦的SOFC發電系統,但與國際領先水平還有很大的差距,主要體現在輸出功率、生產成本及使用壽命等方面。歐洲的SOFC技術處于國際領先水平,具有一批成功實現產品化的公司,通過對其技術和產品的調研,可深入的了解歐洲SOFC技術現狀和發展趨勢,為國內SOFC技術的發展提供借鑒作用。

     

  • 圖  1  SOFC電流傳輸路徑[5]. (a)傳統管式結構;(b)扁管式結構

    Figure  1.  Schematic of SOFC current transmission path[5]: (a) traditional tubular construction; (b) flat-tubular construction

    圖  2  錐管式SOFC結構示意圖[7]

    Figure  2.  Schematic of cone-shaped SOFC[7]

    1―Anode support; 2―Electrolyte membrane; 3―Cathode layer; 4―Interconnect; 5―Edge of the bigger open end of anode support; 6―Edge of the smaller open end of anode support

    圖  3  蜂巢式SOFC示意圖及實物圖[9]. (a)陰極支撐蜂巢式電堆SOFC示意圖;(b)2節蜂巢式SOFC電堆實物圖

    Figure  3.  Schematic diagram and real honeycomb SOFC product[9]: (a) cathode-supported honeycomb SOFC; (b) a photo of a two-unit honeycomb SOFC stack

    圖  4  微管式SOFC結構圖及性能曲線[5, 10-12]. (a)電解質支撐微管式SOFC結構示意圖;(b)陽極支撐蜂微管式SOFC結構示意圖;(c)管徑與輸出功率關系曲線;(d)微管式SOFC熱循環性能

    Figure  4.  Schematic diagrams and performance curve of microtubular SOFC[5, 10-12]: (a) schematic diagram of electrolyte-supported microtubular SOFC; (b) schematic diagram of anode-supported microtubular SOFC; (c) influence of pipe diameter on output power; (d) thermal cycling results for microtubular SOFC

    圖  5  LG公司設計的1 MW SOFC混合發電系統[19]

    Figure  5.  Concept rendering of 1 MW SOFC hybrid power generation system from LG[19]

    圖  6  Delphi燃料電池堆[18]. (a)三代電堆;(b)四代電堆

    Figure  6.  Delphi’s SOFC stack[18]: (a) generation-3 stack; (b) generation-4 stack

    圖  7  DESTA項目示范的集成到重型卡車的SOFC?APU[15,38]

    Figure  7.  Photographs of a heavy-duty truck equipped with SOFC?APU for the DESTA project[15,38]

    圖  8  微型SOFC發電系統。(a)Ultra Electronics AMI公司開發的ROAMIO D245XR燃料電池系統;(b)Atsumitec公司開發的100 W的便攜式SOFC發電系統[39-40]

    Figure  8.  Micro SOFC power generation systems: (a) ROAMIO D245XR fuel cell system developed by Ultra Electronics AMI; (b) 100 W portable SOFC power generation system developed by Atsumitec[39-40]

    圖  9  電堆結構示意圖(a)及5片電堆的耐久性測試結果(b)[22]

    Figure  9.  HEXIS’ stack concept (a) and long-term test results of a 5-cell stack[22] (b)

    圖  10  CERES Power的SteelCell電堆[36]

    Figure  10.  CERES Power’ SteelCell stack[36]

    表  1  管式SOFC的主要制造廠商[13]

    Table  1.   Major manufacturers of tubular SOFC[13]

    CountryCompany/InstitutionConceptPower achieved/kW
    USASiemens-WestinghouseTubular 220
    Flatten-tubular3.3
    Delta0.00041
    AcumentricsMicro-tubular0.25–10
    Ultra Electronics AMIMicro-tubular0.2–0.3
    JapanMitsubishi Heavy Industries, MHITubular250
    Segmented in series flatten-tubular21
    KyoceraSegmented in series flatten-tubular3
    Osaka GasFlatten-tubular0.7
    Tokyo GasSegmented in series flatten-tubular3
    TOTOMicro-tubular3.2
    UKAdelanMicro-tubular0.2
    下載: 導出CSV

    表  2  平板式SOFC支撐結構、特點及部分廠家[15-16]

    Table  2.   Supported structures, features, and manufacturers of planar SOFCs[15-16]

    Supported structuresIllustrationFeaturesManufacturers
    Electrolyte-supportedHigh operating temperatures required for sufficient oxygen ion conductivity; Relatively strong structural support; Less susceptible to failure due to anode re-oxidation; Higher resistance due to low electrolyte conductivityHEXIS, Bloom Energy, Sunfire
    Anode-supportedLower operating temperature (<800 ℃) via
    use of thin electrolytes; Highly conductive anode;
    Mass transport limitation due to thick anodes;
    Potential anode re-oxidation
    Fuel Cell Energy (Versa Power), Delphi, Ceramic Fuel Cells, POSCO Energy
    Metal interconnect-supportedLower operating temperature (<600 ℃); Stronger structures from metallic interconnects; Interconnect oxidation; Flowfield design limitation due to cell support requirementCeres Power, Plansee,
    Topsoe Fuel Cell
    下載: 導出CSV

    表  3  平板式SOFC的主要制造廠商[15,17-27]

    Table  3.   Major manufacturers of planar SOFCs[15,17-27]

    CountryCompany/InstitutionPower achieved
    USADelphi Automotive Systems9 kW stack, system, and APU
    GE50 kW stack and system
    Fuel Cell Energy50 kW system
    LG Fuel Cell Systems200 kW system
    Bloom Energy100–300 kW system
    DenmarkTopsoe1–50 kW stack and system
    FinlandConvion/W?rtsil?58 kW system
    Elcogen1 kW and 3 kW stack
    SwitzerlandSulzer Hexis1.5 kW system
    UKCeres Power1–30 kW stack and system
    Rolls RoyceThe target is a 1 MW power
    generation system
    GermanySunfire0.75–50 kW stack and system
    ItalySolidPower1.5 kW and 2.5 kW system
    JapanKansai Electric Power10 kW system
    NGK Spark PlugCells
    MurataCells
    KoreaPOSCO energy10 kW system
    AustraliaCFCL1.5 kW system
    下載: 導出CSV
    久色视频
  • [1] Yi B L. Fuel Cell-Principle, Technology and Application. Beijing: Chemical Industry Press, 2003

    衣寶廉. 燃料電池: 原理·技術·應用. 北京: 化學工業出版社, 2003
    [2] Yi B L. Fuel Cell-An Efficient and Environmentally Friendly Way to Generate Electricity. Beijing: Chemical Industry Press, 2000

    衣寶廉. 燃料電池—高效、環境友好的發電方式. 北京: 化學工業出版社, 2000
    [3] Li J. Solid oxide fuel cells: development status and key technologies. J Funct Mater Devices, 2007, 13(6): 683 doi: 10.3969/j.issn.1007-4252.2007.06.032

    李箭. 固體氧化物燃料電池: 發展現狀與關鍵技術. 功能材料與器件學報, 2007, 13(6):683 doi: 10.3969/j.issn.1007-4252.2007.06.032
    [4] Hassmann K. SOFC power plants, the Siemens‐Westinghouse approach. Fuel Cells, 2001, 1(1): 78 doi: 10.1002/1615-6854(200105)1:1<78::AID-FUCE78>3.0.CO;2-Q
    [5] Timurkutluk B, Timurkutluk C, Mat M D, et al. A review on cell/stack designs for high performance solid oxide fuel cells. Renewable Sustainable Energy Rev, 2016, 56: 1101 doi: 10.1016/j.rser.2015.12.034
    [6] Suzuki T, Yamaguchi T, Fujishiro Y, et al. Improvement of SOFC performance using a microtubular, anode-supported SOFC. J Electrochem Soc, 2006, 153(5): A925 doi: 10.1149/1.2185284
    [7] Zhang Y H, Liu J, Yin J, et al. Fabrication and performance of cone‐shaped segmented-in-series solid oxide fuel cells. Int J Appl Ceram Technol, 2008, 5(6): 568 doi: 10.1111/j.1744-7402.2008.02253.x
    [8] Wetzko M, Belzner A, Rohr F J, et al. Solid oxide fuel cell stacks using extruded honeycomb type elements. J Power Sources, 1999, 83(1-2): 148 doi: 10.1016/S0378-7753(99)00289-X
    [9] Yamaguchi T, Shimizu S, Suzuki T, et al. Fabrication and evaluation of a novel cathode-supported honeycomb SOFC stack. Mater Lett, 2009, 63(29): 2577 doi: 10.1016/j.matlet.2009.09.009
    [10] Kendall K. Progress in microtubular solid oxide fuel cells. Int J Appl Ceram Technol, 2010, 7(1): 1 doi: 10.1111/j.1744-7402.2008.02350.x
    [11] Kendall K, Dikwal C M, Bujalski W. Comparative analysis of thermal and redox cycling for microtubular SOFCs. ECS Trans, 2007, 7(1): 1521
    [12] Bujalski W, Dikwal C M, Kendall K. Cycling of three solid oxide fuel cell types. J Power Sources, 2007, 171(1): 96 doi: 10.1016/j.jpowsour.2007.01.029
    [13] Vora S. Development of high power density seal-less SOFCs. ECS Trans, 2007, 7(1): 149
    [14] Larminie J, Dicks A, McDonald M S. Fuel Cell Systems Explained. Chichester: J. Wiley, 2003
    [15] Stolten D, Samsun R C, Garland N. Fuel Cells: Data, Facts, and Figures. New Jersey: Wiley-VCH, 2016
    [16] Singnal S C, Kendall K. High Temperature Solid Oxide Fuel Cell: Fundamentals, Design and Applications. Beijing: Science Press, 2007
    [17] Hickey D, Alinger M, Shapiro A, et al. Stack development at GE-fuel cells. ECS Trans, 2017, 78(1): 107 doi: 10.1149/07801.0107ecst
    [18] Mukerjee S, Haltiner K, Kerr R, et al. Latest update on Delphi's solid oxide fuel cell stack for transportation and stationary applications. ECS Trans, 2011, 35(1): 139
    [19] Vora S D, Lundberg W L, Pierre J F. Overview of US department of energy office of fossil energy’s solid oxide fuel cell program. ECS Trans, 2017, 78(1): 3 doi: 10.1149/07801.0003ecst
    [20] Noponen M, Torri P, G??s J, et al. Status of solid oxide fuel cell development at elcogen. ECS Trans, 2015, 68(1): 151 doi: 10.1149/06801.0151ecst
    [21] Barrett S. Convion C50 product being validated for distributed generation. Fuel Cells Bull, 2015, 2015(4): 6
    [22] Mai A, Fleischhauer F, Denzler R, et al. Progress in HEXIS’Development: Galileo 1000 N and HEXIS'Next Generation SOFC System. ECS Trans, 2017, 78(1): 97 doi: 10.1149/07801.0097ecst
    [23] Beale S. Precision engineering for future propulsion and power systems: a perspective from Rolls-Royce. Philos Trans R Soc A, 2012, 370(1973): 4130 doi: 10.1098/rsta.2011.0162
    [24] Brabandt J, Posdziech O. System approach of a pressurized high-temperature electrolysis. ECS Trans, 2017, 78(1): 2987 doi: 10.1149/07801.2987ecst
    [25] Bertoldi M, Bucheli O, Ravagni A. Development, manufacturing and deployment of SOFC-based products at Solid power. ECS Trans, 2015, 68(1): 117 doi: 10.1149/06801.0117ecst
    [26] Inagaki T, Nishiwaki F, Yamasaki S, et al. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte. J Power Sources, 2008, 181(2): 274 doi: 10.1016/j.jpowsour.2007.10.088
    [27] Nirasawa H. Current status of national SOFC Projects in Japan. ECS Trans, 2017, 78(1): 33 doi: 10.1149/07801.0033ecst
    [28] Blum L, Meulenberg W A, Nabielek H, et al. Worldwide SOFC technology overview and benchmark. Int J Appl Ceram Technol, 2005, 2(6): 482 doi: 10.1111/j.1744-7402.2005.02049.x
    [29] EG&G Technical Services, Inc. Fuel Cell Handbook, 2004: 1
    [30] Vora S D. SECA program overview and status. ECS Trans, 2013, 57(1): 11 doi: 10.1149/05701.0011ecst
    [31] Christiansen N, Primdahl S, Wandel M, et al. Status of the solid oxide fuel cell development at topsoe fuel cell A/S and DTU energy conversion. ECS Trans, 2013, 57(1): 43 doi: 10.1149/05701.0043ecst
    [32] Halinen M, Saarinen J, Noponen M, et al. Experimental analysis on performance and durability of SOFC demonstration unit. Fuel Cells, 2010, 10(3): 440 doi: 10.1002/fuce.200900152
    [33] Nakanishi A, Hattori M, Sakaki Y, et al. Development of MOLB type SOFC. ECS Proc Vol, 2003, 2003: 53
    [34] Carter J D, Cruse T A, Bae J M, et al. Bipolar plate-supported solid oxide fuel cells for auxiliary power units//2002 MRS Fall Meeting. Boston, 2003: 545
    [35] Visco S J, Jacobson C P, Villareal I, et al. Development of low-cost alloy supported SOFCs. ECS Proc Vol, 2003, 2003: 1040
    [36] Leah R T, Bone A, Hammer E, et al. Development progress on the ceres power steel cell technology platform: further progress towards commercialization. ECS Trans, 2017, 78(1): 87 doi: 10.1149/07801.0087ecst
    [37] Veyo S E, Shockling L A, Dederer J T, et al. Tubular solid oxide fuel cell/gas turbine hybrid cyclepower systems: status. J Eng Gas Turbines Power, 2002, 124(4): 845 doi: 10.1115/1.1473148
    [38] Rechberger J, Kaupert A, Hagerskans J, et al. Demonstration of the first European SOFC APU on a heavy duty truck. Transp Res Procedia, 2016, 14: 3676 doi: 10.1016/j.trpro.2016.05.442
    [39] Barrett S. AMI demos UGV power pod on iRobot PackBot. Fuel Cells Bull, 2009, 2009(11): 4
    [40] Kachman D. Adaptive materials demonstrates fuel cell success in commercial markets. Fuel Cells Bull, 2013, 2013(12): 12 doi: 10.1016/S1464-2859(13)70423-1
    [41] Tallgren J, Himanen O, Noponen M. Experimental characterization of low temperature solid oxide cell stack. ECS Trans, 2017, 78(1): 3103 doi: 10.1149/07801.3103ecst
    [42] Barrett S, Elcogen, Convion supply SOFC CHP systems to business district smart grid project in Finland. Fuel Cells Bull, 2018, 2018(2): 1
    [43] Blennow P, Hjelm J, Klemens? T, et al. Manufacturing and characterization of metal-supported solid oxide fuel cells. J Power Sources, 2011, 196(17): 7117 doi: 10.1016/j.jpowsour.2010.08.088
    [44] Barrett S, Ceres Power, Weichai finalise strategic collaboration, JV deal. Fuel Cells Bull, 2019, 2019(1): 11
    [45] Barrett S, Ceres, Weichai Power develop first range-extender bus prototype. Fuel Cells Bull, 2019, 2019(10): 4
    [46] Leah R T, Bone A, Selcuk A, et al. Latest results and commercialization of the CERES power Steelcell technology platform. ECS Trans, 2019, 91(1): 51 doi: 10.1149/09101.0051ecst
    [47] Barrett S, Solid power produces 1000th BlueGEN SOFC generator. Fuel Cells Bull, 2018, 2018(1): 6
    [48] Barrett S, Solid power agrees German distribution with Bosch's Buderus. Fuel Cells Bull, 2018, 2018(7): 12
    [49] Strohbach T, Mittmann F, Walter C, et al. Sunfire industrial SOC stacks and modules. ECS Trans, 2015, 68(1): 125 doi: 10.1149/06801.0125ecst
    [50] Zhu Y, Du C, Wang S, et al. Research progress on the stability of perovskite solar cells. Chin J Eng, 2020, 42(1): 16

    朱彧, 杜晨, 王碩, 等. 鈣鈦礦太陽能電池穩定性研究進展. 工程科學學報, 2020, 42(1):16
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  4514
  • HTML全文瀏覽量:  3658
  • PDF下載量:  701
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-10
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回