[1] |
Zhou C B, Chen Y F, Jiang Q H, et al. A generalized multi-field coupling approach and its application to stability and deformation control of a high slope. J Rock Mech Geotech Eng, 2011, 3(3): 193 doi: 10.3724/SP.J.1235.2011.00193
|
[2] |
Su B Y, Zhang W J, Sheng J C, et al. Study of permeability in single fracture under effects of coupled fluid flow and chemical dissolution. Rock Soil Mech, 2010, 31(11): 3361 doi: 10.3969/j.issn.1000-7598.2010.11.001速寶玉, 張文捷, 盛金昌, 等. 滲流–化學溶解耦合作用下巖石單裂隙滲透特性研究. 巖土力學, 2010, 31(11):3361 doi: 10.3969/j.issn.1000-7598.2010.11.001
|
[3] |
Qin Z H. Study of Load-Bearing Characteristics of Surrounding Rock of Hydraulic Tunnels under High Geotemperature and Hydraulic Pressure Conditions Using Coupled THMD Numerical Model[Dissertation]. Nanning: Guangxi University, 2016秦子華. 基于熱–水–損傷耦合模型的高地溫水工高壓隧洞圍巖承載特性數值模擬研究[學位論文]. 南寧: 廣西大學, 2016
|
[4] |
Yang Y L, Zheng K Y, Li Z W, et al. Experimental study on pore–fracture evolution law in the thermal damage process of coal. Int J Rock Mech Min Sci, 2019, 116: 13 doi: 10.1016/j.ijrmms.2019.03.004
|
[5] |
Hudson J A, Jing L. Demonstration of coupled models and their validation against experiment: the current phase DECOVALEX 2015//Rock Characterisation, Modelling and Engineering Design Methods—Proceedings of the 3rd ISRM SINOROCK, Symposium. Shanghai, 2013: 391
|
[6] |
Zhou H, Feng X T. Research progress in rock stress–hydraulic–chemical coupling process. Chin J Rock MechEng, 2006, 25(4): 855 doi: 10.3321/j.issn:1000-6915.2006.04.021周輝, 馮夏庭. 巖石應力–水力–化學耦合過程研究進展. 巖石力學與工程學報, 2006, 25(4):855 doi: 10.3321/j.issn:1000-6915.2006.04.021
|
[7] |
Pan P Z, Feng X T, Huang X H, et al. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton. Environ Geol, 2009, 57(6): 1299 doi: 10.1007/s00254-008-1463-1
|
[8] |
Li K. Hydrothermal Coupling Model and Hydraulic Fracturing Law of Oil Shale in Situ Mining[Dissertation]. Fuxing: Liaoning University of Engineering and Technology, 2011李凱. 油頁巖原位開采水熱力耦合模型與水力壓裂規律研究[學位論文]. 阜新: 遼寧工程技術大學, 2011
|
[9] |
Tan X J, Chen W Z, Wu G J, et al. Study of thermo–hydro–mechanical–damage (THMD) coupled model in the condition of freeze-thaw cycles and its application to cold region tunnels. Chin J Rock Mech Eng, 2013, 32(2): 239 doi: 10.3969/j.issn.1000-6915.2013.02.004譚賢君, 陳衛忠, 伍國軍, 等. 低溫凍融條件下巖體溫度–滲流–應力–損傷(THMD)耦合模型研究及其在寒區隧道中的應用. 巖石力學與工程學報, 2013, 32(2):239 doi: 10.3969/j.issn.1000-6915.2013.02.004
|
[10] |
Yang J H, Zhang G, Qiao T, et al. Establishment and verification of rock damage mechanics model under the coupled thermo–hydro–mechanical effect. J Saf Sci Technol, 2017, 13(4): 87楊金輝, 章光, 喬彤, 等. 熱–水–力耦合作用下巖石損傷力學模型與驗證. 中國安全生產科學技術, 2017, 13(4):87
|
[11] |
Hsieh P A, Neuman S P, Stiles G K, et al. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2. Methodology and application to fractured rocks. Water Resour Res, 1985, 21(11): 1667 doi: 10.1029/WR021i011p01667
|
[12] |
Yang J B, Feng X T Pan P Z. Experimental study of permeability characteristics of single rock fracture considering stress history. Rock Soil Mech, 2013, 34(6): 1629楊金保, 馮夏庭, 潘鵬志. 考慮應力歷史的巖石單裂隙滲流特性試驗研究. 巖土力學, 2013, 34(6):1629
|
[13] |
He H J, Lan J W, Chen Y M, et al. Monitoring and analysis of slope slip process at a landfill in Northwest China. Chin J Geotech Eng, 2015, 37(9): 1721 doi: 10.11779/CJGE201509022何海杰, 蘭吉武, 陳云敏, 等. 西北地區某填埋場堆體滑移過程監測與分析. 巖土工程學報, 2015, 37(9):1721 doi: 10.11779/CJGE201509022
|
[14] |
Zhao Y, Yang D, Feng Z, et al. Multi-field coupling theory of porous media and its applications to resources and energy engineering. Chin J Rock Mech Eng, 2008, 27(7): 1321 doi: 10.3321/j.issn:1000-6915.2008.07.004趙陽升, 楊棟, 馮增朝, 等. 多孔介質多場耦合作用理論及其在資源與能源工程中的應用. 巖石力學與工程學報, 2008, 27(7):1321 doi: 10.3321/j.issn:1000-6915.2008.07.004
|
[15] |
Müller C, Frühwirt T, Haase D, Et al. Modeling deformation and damage of rock salt using the discrete element method. Int J Rock Mech Min Sci, 2018, 103: 230 doi: 10.1016/j.ijrmms.2018.01.022
|
[16] |
Shi B. On fields and their coupling in engineering geology. J Eng Geol, 2013, 21(5): 673 doi: 10.3969/j.issn.1004-9665.2013.05.001施斌. 論工程地質中的場及其多場耦合. 工程地質學報, 2013, 21(5):673 doi: 10.3969/j.issn.1004-9665.2013.05.001
|
[17] |
Zhou C B, Chen Y F, Jiang Q H, et al. On generalized multi-field coupling for fractured rock masses and its applications to rock engineering. Chin J Rock Mech Eng, 2008, 27(7): 1329 doi: 10.3321/j.issn:1000-6915.2008.07.005周創兵, 陳益峰, 姜清輝, 等. 論巖體多場廣義耦合及其工程應用. 巖石力學與工程學報, 2008, 27(7):1329 doi: 10.3321/j.issn:1000-6915.2008.07.005
|
[18] |
Zhou C Y, Peng Z Y, Shang W, et al. On the key problem of the water-rock interaction in geoengineering: mechanical variabilityof special weak rocks and some development trends. Rock Soil Mech, 2002, 23(1): 124 doi: 10.3969/j.issn.1000-7598.2002.01.028周翠英, 彭澤英, 尚偉, 等. 論巖土工程中水–巖相互作用研究的焦點問題— —特殊軟巖的力學變異性. 巖土力學, 2002, 23(1):124 doi: 10.3969/j.issn.1000-7598.2002.01.028
|
[19] |
Griggs D. Creep of rocks. J Geol, 1939, 47(3): 225 doi: 10.1086/624775
|
[20] |
Malan D F. Manuel Rocha medal recipient simulating the time-dependent behaviour of excavations in hard rock. Rock Mech Rock Eng, 2002, 35(4): 225 doi: 10.1007/s00603-002-0026-0
|
[21] |
Xu W Y, Yang S Q, Xie S Y, et al. Investigation on triaxial rheological mechanical properties of greenschist specimen (II): model analysis. Rock Soil Mech, 2005, 26(5): 693 doi: 10.3969/j.issn.1000-7598.2005.05.004徐衛亞, 楊圣奇, 謝守益, 等. 綠片巖三軸流變力學特性的研究(II): 模型分析. 巖土力學, 2005, 26(5):693 doi: 10.3969/j.issn.1000-7598.2005.05.004
|
[22] |
Zhang X D, Yin X W, Fu Q. Study of triaxial creep properties of purple mudstone under stepwise loading. J Exp Mech, 2011, 26(1): 61張向東, 尹曉文, 傅強. 分級加載條件下紫色泥巖三軸蠕變特性研究. 實驗力學, 2011, 26(1):61
|
[23] |
Espada M, Lamas L. Back analysis procedure for identification of anisotropic elastic parameters of overcored rock specimens. Rock Mech Rock Eng, 2017, 50(3): 513 doi: 10.1007/s00603-016-1129-3
|
[24] |
Wang Y M. Analysis of Temperature on the Mechanical Properties of Granite Experimental Study on Effect and the Hole Wall Stability[Dissertation]. Beijing: China University of Geosciences (Beijing), 2012王艷梅. 溫度對花崗巖力學性能影響實驗研究及井壁穩定性的分析[學位論文]. 北京: 中國地質大學(北京), 2012
|
[25] |
Rukhaiyar S, Samadhiya N K. Strength behaviour of sandstone subjected to polyaxial state of stress. Int J Min Sci Technol, 2017, 27(6): 889 doi: 10.1016/j.ijmst.2017.06.022
|
[26] |
Huang D, Gu D M, Yang C, et al. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mech Rock Eng, 2016, 49(2): 375 doi: 10.1007/s00603-015-0757-3
|
[27] |
Ewalds H L, Waanhill R J. Fracture Mechanics. London: Edwald Arnold, 1984
|
[28] |
Zhou J W, Xu W Y, Shi C. Investigation on compression-shear fracture criterion of rock based on failure criteria. Chin J Rock Mech Eng, 2007, 26(6): 1194 doi: 10.3321/j.issn:1000-6915.2007.06.014周家文, 徐衛亞, 石崇. 基于破壞準則的巖石壓剪斷裂判據研究. 巖石力學與工程學報, 2007, 26(6):1194 doi: 10.3321/j.issn:1000-6915.2007.06.014
|
[29] |
Tang C A, Lin P, Wong R H C, et al. Analysis of crack coalescence in rock-like materials containing three flaws—part II: numerical approach. Int J Rock Mech Min Sci, 2001, 38(7): 925 doi: 10.1016/S1365-1609(01)00065-X
|
[30] |
Liu G. Pore-Scale Modeling on Hydro–Mechanical Coupling Effects of Geotechnical Materials[Dissertation]. Wuhan: Wuhan University, 2016劉廣. 巖土孔隙尺度水力耦合特性細觀模擬研究[學位論文]. 武漢: 武漢大學, 2016
|
[31] |
Yan B, Ren F, Cai M, et al. Bayesian model based on Markov chain Monte Carlo for identifying mine water sources in submarine gold mining. J Clean Prod, 2020, 253: 120008 doi: 10.1016/j.jclepro.2020.120008
|
[32] |
Zeng C L. Study on Mechanical Behavior of Soft Rock in Coupled Effect of High Temperature, High Pressure and Seepage[Dissertation]. Qingdao: Qingdao University of Science and Technology, 2007曾春雷. 高溫、高壓和滲流耦合作用下軟巖力學行為的研究[學位論文]. 青島: 青島科技大學, 2007
|
[33] |
Wang Z J. Damage Evolution Characteristics and the Accumulation Damage Model of Sandstone under Dry-Wet Cycle[Dissertation]. Chongqing: Chongqing University, 2016王子娟. 干濕循環作用下砂巖的宏細觀損傷演化及本構模型研究[學位論文]. 重慶: 重慶大學, 2016
|
[34] |
Bekele Y W, Kyokawa H, Kvarving A M, et al. Isogeometric analysis of THM coupled processes in ground freezing. Comput Geotech, 2017, 88: 129 doi: 10.1016/j.compgeo.2017.02.020
|
[35] |
Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chem Geol, 1991, 90(1-2): 107 doi: 10.1016/0009-2541(91)90037-R
|
[36] |
Taron J, Elsworth D, Min K B. Numerical simulation of thermal–hydrologic–mechanical–chemical processes in deformable, fractured porous media. Int J Rock Mech Min Sci, 2009, 46(5): 842 doi: 10.1016/j.ijrmms.2009.01.008
|
[37] |
Yasuhara H, Elsworth D, Polak A. Evolution of permeability in a natural fracture: significant role of pressure solution. J Geophys Res Solid Earth, 2004, 109(B3): B03204
|
[38] |
Yeh G T, Tripathi V S. A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res, 1991, 27(12): 3075 doi: 10.1029/91WR02028
|
[39] |
Sheng J C, Xu X C, Yao D S, et al. Advances in permeability evolution in fractured rocks during hydro–mechanical–chemical processes. Chin J Geotech Eng, 2011, 33(7): 996盛金昌, 許孝臣, 姚德生, 等. 流固化學耦合作用下裂隙巖體滲透特性研究進展. 巖土工程學報, 2011, 33(7):996
|
[40] |
Wang B F, Sun K M, Liang B, et al. Experimental research on the mechanical character of deep mining rocks in THM coupling condition. Energy Sources, Part A, 2019. https://doi.org/10.1080/15567036.2019.1571125
|
[41] |
Liu H L, Yang T H, Zhu W C, et al. Investigation on failure and water inrush from roof of 5th Coal Seam in Fangezhuang Coal Mine. J Min Saf Eng, 2009, 26(3): 332 doi: 10.3969/j.issn.1673-3363.2009.03.016劉洪磊, 楊天鴻, 朱萬成, 等. 范各莊礦5煤頂板破壞及突水模擬研究. 采礦與安全工程學報, 2009, 26(3):332 doi: 10.3969/j.issn.1673-3363.2009.03.016
|
[42] |
Xu X C, Sheng J C. Permeability of single fracture under coupled hydrological–mechanical–chemical action. J Liaoning Tech Univ Nat Sci, 2009, 28(Suppl): 270許孝臣, 盛金昌. 滲流–應力–化學耦合作用下單裂隙滲透特性. 遼寧工程技術大學學報: 自然科學版, 2009, 28(增刊): 270
|
[43] |
Liang W G. Study on multi-field coupling theory and its application of hydraulic fracturing and solution mining for salt deposits. Chin J Rock Mech Eng, 2005, 24(6): 1090 doi: 10.3321/j.issn:1000-6915.2005.06.035梁衛國. 鹽類礦床水壓致裂水溶開采的多場耦合理論及應用研究. 巖石力學與工程學報, 2005, 24(6):1090 doi: 10.3321/j.issn:1000-6915.2005.06.035
|
[44] |
Chen Q. Systemic Study on Engineering Geology of Long Tunnel in Karst and Gas-Storaging Area[Dissertation]. Chengdu: Southwest Jiaotong University, 2005陳強. 巖溶儲氣長隧道工程地質系統研究[學位論文]. 成都: 西南交通大學, 2005
|
[45] |
Zhou H, Shao J F, Feng X T, et al. Research on statistical penetration meso-model of rock— —Part II: case analysis. Rock Soil Mech, 2006, 27(1): 123 doi: 10.3969/j.issn.1000-7598.2006.01.024周輝, 邵建富, 馮夏庭, 等. 巖石細觀統計滲流模型研究(II): 實例分析. 巖土力學, 2006, 27(1):123 doi: 10.3969/j.issn.1000-7598.2006.01.024
|
[46] |
Liu Z J, Li X K, Wu W H. A constitutive model and numerical simulation for coupled chemo–thermo–hydro–mechanical process in porous media. Chin J Geotech Eng, 2004, 26(6): 797 doi: 10.3321/j.issn:1000-4548.2004.06.014劉澤佳, 李錫夔, 武文華. 多孔介質中化學–熱–水力–力學耦合過程本構模型和數值模擬. 巖土工程學報, 2004, 26(6):797 doi: 10.3321/j.issn:1000-4548.2004.06.014
|
[47] |
Wang B Y, Yu B H, Zhang Y Q. The influence of temperature on borehole stability. Inner Mongolia Petrochem Ind, 2008(8): 129 doi: 10.3969/j.issn.1006-7981.2008.08.055王炳印, 蔚寶華, 張躍群. 泥頁巖地層井壁失穩的一種新機理. 內蒙古石油化工, 2008(8):129 doi: 10.3969/j.issn.1006-7981.2008.08.055
|
[48] |
Ma L J, Wang M Y, Zhang N, et al. A variable-parameter creep damage model incorporating the effects of loading frequency for rock salt and its application in a bedded storage cavern. Rock Mech Rock Eng, 2017, 50(9): 2495 doi: 10.1007/s00603-017-1236-9
|
[49] |
Yan B, Guo Q, Ren F, et al. Modified Nishihara model and experimental verification of deep rock mass under the water-rock interaction. Int J Rock Mech Min Sci, 2020, 128: 104250 doi: 10.1016/j.ijrmms.2020.104250
|
[50] |
Andargoli M B E, Shahriar K, Ramezanzadeh A, et al. The analysis of dates obtained from long-term creep tests to determine creep coefficients of rock salt. Bull Eng Geol Environ, 2019, 78(3): 1617 doi: 10.1007/s10064-018-1243-4
|
[51] |
Liu X W, Liu Q S, Lu C B, et al. A numerical manifold method for fracture propagation of rock mass considering thermo–mechanical coupling. Chin J Rock Mech Eng, 2014, 33(7): 1432劉學偉, 劉泉聲, 盧超波, 等. 溫度–應力耦合作用下巖體裂隙擴展的數值流形方法研究. 巖石力學與工程學報, 2014, 33(7):1432
|
[52] |
Xu W Y, Yang S Q. Experiment and modeling investigation on shear rheological property of joint rock. Chin J Rock Mech Eng, 2005, 24(Suppl 2): 5536徐衛亞, 楊圣奇. 節理巖石剪切流變特性試驗與模型研究. 巖石力學與工程學報, 2005, 24(增刊2): 5536
|
[53] |
Zhang Y, Xiong L X. Rock rheological mechanics: present state of research and its direction of development. J Geomech, 2008, 14(3): 274 doi: 10.3969/j.issn.1006-6616.2008.03.009張堯, 熊良宵. 巖石流變力學的研究現狀及其發展方向. 地質力學學報, 2008, 14(3):274 doi: 10.3969/j.issn.1006-6616.2008.03.009
|
[54] |
Liu Q S, Luo C Y, Chen Z Y, et al. Development of triaxial rheological testing equipment for in-situ rock mass. Rock Soil Mech, 2018, 39(Suppl 2): 473劉泉聲, 羅慈友, 陳自由, 等. 現場巖體三軸流變試驗設備研制. 巖土力學, 2018, 39(增刊2): 473
|
[55] |
Zhang C L. Multi-Field Coupling Analysis of Deep Rock Mass and Unloading Study on Underground Excavation[Dissertation]. Wuhan: Wuhan University of Technology, 2007張成良. 深部巖體多場耦合分析及地下空間開挖卸荷研究[學位論文]. 武漢: 武漢理工大學, 2007
|
[56] |
Liu L, Xu W Y, Wang H L, et al. Permeability evolution of granite gneiss during triaxial creep tests. Rock Mech Rock Eng, 2016, 49(9): 3455 doi: 10.1007/s00603-016-0999-8
|
[57] |
Li F X. Experimental Study on Nonlinear Three-Dimensional Rheological Constitutive Model of Q3 Remolded-Loess and Its Implementation in FLAC3D[Dissertation]. Xi'an: Chang’an University, 2016李飛霞. Q3重塑黃土三維非線性流變本構模型試驗研究及其在FLAC3D中的實現[學位論文]. 西安: 長安大學, 2016
|
[58] |
Zhang Z L, Xu W Y, Wang W. Study of triaxial creep tests and its nonlinear visco-elastoplastic creep model of rock from compressive zone of dam foundation in Xiangjiaba Hydropower Station. Chin J Rock Mech Eng, 2011, 30(1): 132張治亮, 徐衛亞, 王偉. 向家壩水電站壩基擠壓帶巖石三軸蠕變試驗及非線性黏彈塑性蠕變模型研究. 巖石力學與工程學報, 2011, 30(1):132
|
[59] |
Bertram A, Glüge R. Solid Mechanics. Switzerland: Springer International Publishing, 2015
|
[60] |
Zhao Y L, Wang Y X, Wang W J, et al. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int J Rock Mech Min Sci, 2017, 93: 66 doi: 10.1016/j.ijrmms.2017.01.004
|
[61] |
Liu X R, Yang X, Wang J B. A nonlinear creep model of rock salt and its numerical implement in FLAC3D. Adv Mater Sci Eng, 2015: 285158
|
[62] |
Zhao Y L, Zhang L Y, Wang W J, et al. Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles. Rock Mech Rock Eng, 2017, 50(6): 1409 doi: 10.1007/s00603-017-1187-1
|
[63] |
Xu H B, Zhu W S, Bai S W. A visco–elastic–plastic–damage constitutive model of rock masses and its finite element analysis. Rock Soil Mech, 1992, 13(1): 11徐海濱, 朱維申, 白世偉. 巖體粘彈塑性–損傷本構模型及其有限元分析. 巖土力學, 1992, 13(1):11
|
[64] |
Zhu W S, Zheng W H, Wang W T. Numerical simulation of a new damage rheology model for jointed rock mass. Chin J Geotech Eng, 2010, 32(7): 1011朱維申, 鄭文華, 王文濤. 新型節理巖體損傷流變模型數值模擬研究. 巖土工程學報, 2010, 32(7):1011
|